Abstract

Quantitative phase recovery of phase objects is achieved by a direct inversion using the defocused weak object transfer function. The presented method is noniterative and is based on partially coherent principles. It also takes into account the optical properties of the system and gives the phase of the object directly. The proposed method is especially suitable for application to weak phase objects, such as live and unstained biological samples but, surprisingly, has also been shown to work with comparatively strong phase objects.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Cuche, F. Bevilacqua, and C. Depeursinge, Opt. Lett. 24, 291 (1999).
    [CrossRef]
  2. S. S. Kou and C. J. R. Sheppard, Opt. Express 15, 13640 (2007).
    [CrossRef] [PubMed]
  3. W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. Dasari, and M. Feld, Nat. Methods 4, 717 (2007).
    [CrossRef] [PubMed]
  4. F. Charrière, A. Marian, F. Montfort, J. Kühn, T. Colomb, E. Cuche, P. Marquet, and C. Depeursinge, Opt. Lett. 31, 178 (2006).
    [CrossRef] [PubMed]
  5. S. S. Kou and C. J. R. Sheppard, Appl. Opt. 48, H168 (2009).
    [CrossRef] [PubMed]
  6. O. Haeberlé, K. Belkebir, H. Giovaninni, and A. Sentenac, J. Mod. Opt. 57, 686 (2010).
    [CrossRef]
  7. M. R. Teague, J. Opt. Soc. Am. 73, 1434 (1983).
    [CrossRef]
  8. N. Streibl, J. Opt. Soc. Am. A 2, 121 (1985).
    [CrossRef]
  9. A. Barty, K. A. Nugent, D. Paganin, and A. Roberts, Opt. Lett. 23, 817 (1998).
    [CrossRef]
  10. C. J. R. Sheppard, J. Opt. Soc. Am. A 21, 828 (2004).
    [CrossRef]
  11. S. S. Kou, L. Waller, G. Barbastathis, and C. J. R. Sheppard, Opt. Lett. 35, 447 (2010).
    [CrossRef] [PubMed]
  12. L. Waller, S. S. Kou, C. J. R. Sheppard, and G. Barbastathis, Opt. Express 18, 22817 (2010).
    [CrossRef] [PubMed]

2010 (3)

2009 (1)

2007 (2)

S. S. Kou and C. J. R. Sheppard, Opt. Express 15, 13640 (2007).
[CrossRef] [PubMed]

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. Dasari, and M. Feld, Nat. Methods 4, 717 (2007).
[CrossRef] [PubMed]

2006 (1)

2004 (1)

1999 (1)

1998 (1)

1985 (1)

1983 (1)

Badizadegan, K.

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. Dasari, and M. Feld, Nat. Methods 4, 717 (2007).
[CrossRef] [PubMed]

Barbastathis, G.

Barty, A.

Belkebir, K.

O. Haeberlé, K. Belkebir, H. Giovaninni, and A. Sentenac, J. Mod. Opt. 57, 686 (2010).
[CrossRef]

Bevilacqua, F.

Charrière, F.

Choi, W.

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. Dasari, and M. Feld, Nat. Methods 4, 717 (2007).
[CrossRef] [PubMed]

Colomb, T.

Cuche, E.

Dasari, R.

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. Dasari, and M. Feld, Nat. Methods 4, 717 (2007).
[CrossRef] [PubMed]

Depeursinge, C.

Fang-Yen, C.

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. Dasari, and M. Feld, Nat. Methods 4, 717 (2007).
[CrossRef] [PubMed]

Feld, M.

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. Dasari, and M. Feld, Nat. Methods 4, 717 (2007).
[CrossRef] [PubMed]

Giovaninni, H.

O. Haeberlé, K. Belkebir, H. Giovaninni, and A. Sentenac, J. Mod. Opt. 57, 686 (2010).
[CrossRef]

Haeberlé, O.

O. Haeberlé, K. Belkebir, H. Giovaninni, and A. Sentenac, J. Mod. Opt. 57, 686 (2010).
[CrossRef]

Kou, S. S.

Kühn, J.

Lue, N.

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. Dasari, and M. Feld, Nat. Methods 4, 717 (2007).
[CrossRef] [PubMed]

Marian, A.

Marquet, P.

Montfort, F.

Nugent, K. A.

Oh, S.

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. Dasari, and M. Feld, Nat. Methods 4, 717 (2007).
[CrossRef] [PubMed]

Paganin, D.

Roberts, A.

Sentenac, A.

O. Haeberlé, K. Belkebir, H. Giovaninni, and A. Sentenac, J. Mod. Opt. 57, 686 (2010).
[CrossRef]

Sheppard, C. J. R.

Streibl, N.

Teague, M. R.

Waller, L.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Comparison of WOTF and TIE reconstructions for a well-matched single-mode step-index fiber. (a) TIE method (negative image). (b) WOTF method (negative image). (c) Line profile of the reconstructions compared to theoretical values.

Fig. 2
Fig. 2

PMMA target and its TIE and WOTF reconstructions with AFM characterization. Quantitative phase from (a) TIE and (b), (c) WOTF reconstruction methods. (d) AFM profiling. (e) Comparison of line profiles.

Fig. 3
Fig. 3

Ascaris TIE and WOTF reconstructions. (a) Best focused center image with region of interest. Quantitative phase from (b) TIE and (c) WOTF (with inverse Laplacian) reconstruction methods. (d) Comparison of line profiles.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

2 π λ z I = · ( I ϕ ) ,

Metrics