Abstract

We developed an off-axis quantitative phase microscopy that works for a light source with an extremely short spatial coherence length in order to reduce the diffraction noise and enhance the spatial resolution. A dynamic speckle wave whose coherence length is 440nm was used as an illumination source. To implement an off-axis interferometry for a source of low spatial coherence, a diffraction grating was inserted in the reference beam path. In doing so, an oblique illumination was generated without rotation of the wavefront, which leads to a full-field and single-shot phase recording with improved phase sensitivity of more than a factor of 10 in comparison with coherent illumination. The spatial resolution, both laterally and axially, and the depth selectivity are significantly enhanced due to the wide angular spectrum of the speckle wave. We applied our method to image the dynamics of small intracellular particles in live biological cells. With enhanced phase sensitivity and speed, the proposed method will serve as a useful tool to study the dynamics of biological specimens.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications (Roberts, 2007).
  2. P. Jacquot and J. M. Fournier, in Interferometry in Speckle Light: Theory and Applications: Proceedings of the International Conference (Springer, 2000), pp. 25–28.
  3. J. E. Baldwin, C. A. Haniff, C. D. Mackay, and P. J. Warner, Nature 320, 595 (1986).
    [CrossRef]
  4. A. E. Desjardins, B. J. Vakoc, G. J. Tearney, and B. E. Bouma, Opt. Express 14, 4736 (2006).
    [CrossRef] [PubMed]
  5. P. F. Almoro, G. Pedrini, P. N. Gundu, W. Osten, and S. G. Hanson, Opt. Lett. 35, 1028 (2010).
    [CrossRef] [PubMed]
  6. Y. Park, W. Choi, Z. Yaqoob, R. Dasari, K. Badizadegan, and M. S. Feld, Opt. Express 17, 12285 (2009).
    [CrossRef] [PubMed]
  7. M. G. Somekh, C. W. See, and J. Goh, Opt. Commun. 174, 75 (2000).
    [CrossRef]
  8. M. C. Pitter, C. W. See, and M. G. Somekh, Opt. Lett. 29, 1200 (2004).
    [CrossRef] [PubMed]
  9. F. Dubois, M. L. N. Requena, C. Minetti, O. Monnom, and E. Istasse, Appl. Opt. 43, 1131 (2004).
    [CrossRef] [PubMed]
  10. K. Creath, Prog. Opt. 26, 349 (1988).
    [CrossRef]
  11. T. Ikeda, G. Popescu, R. R. Dasari, and M. S. Feld, Opt. Lett. 30, 1165 (2005).
    [CrossRef] [PubMed]
  12. D. Wirtz, Annu. Rev. Biophys. 38, 301 (2009).
    [CrossRef] [PubMed]
  13. Z. Wang, L. Millet, M. Mir, H. F. Ding, S. Unarunotai, J. Rogers, M. U. Gillette, and G. Popescu, Opt. Express 19, 1016 (2011).
    [CrossRef] [PubMed]

2011 (1)

2010 (1)

2009 (2)

2007 (1)

J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications (Roberts, 2007).

2006 (1)

2005 (1)

2004 (2)

2000 (2)

P. Jacquot and J. M. Fournier, in Interferometry in Speckle Light: Theory and Applications: Proceedings of the International Conference (Springer, 2000), pp. 25–28.

M. G. Somekh, C. W. See, and J. Goh, Opt. Commun. 174, 75 (2000).
[CrossRef]

1988 (1)

K. Creath, Prog. Opt. 26, 349 (1988).
[CrossRef]

1986 (1)

J. E. Baldwin, C. A. Haniff, C. D. Mackay, and P. J. Warner, Nature 320, 595 (1986).
[CrossRef]

Almoro, P. F.

Badizadegan, K.

Baldwin, J. E.

J. E. Baldwin, C. A. Haniff, C. D. Mackay, and P. J. Warner, Nature 320, 595 (1986).
[CrossRef]

Bouma, B. E.

Choi, W.

Creath, K.

K. Creath, Prog. Opt. 26, 349 (1988).
[CrossRef]

Dasari, R.

Dasari, R. R.

Desjardins, A. E.

Ding, H. F.

Dubois, F.

Feld, M. S.

Fournier, J. M.

P. Jacquot and J. M. Fournier, in Interferometry in Speckle Light: Theory and Applications: Proceedings of the International Conference (Springer, 2000), pp. 25–28.

Gillette, M. U.

Goh, J.

M. G. Somekh, C. W. See, and J. Goh, Opt. Commun. 174, 75 (2000).
[CrossRef]

Goodman, J. W.

J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications (Roberts, 2007).

Gundu, P. N.

Haniff, C. A.

J. E. Baldwin, C. A. Haniff, C. D. Mackay, and P. J. Warner, Nature 320, 595 (1986).
[CrossRef]

Hanson, S. G.

Ikeda, T.

Istasse, E.

Jacquot, P.

P. Jacquot and J. M. Fournier, in Interferometry in Speckle Light: Theory and Applications: Proceedings of the International Conference (Springer, 2000), pp. 25–28.

Mackay, C. D.

J. E. Baldwin, C. A. Haniff, C. D. Mackay, and P. J. Warner, Nature 320, 595 (1986).
[CrossRef]

Millet, L.

Minetti, C.

Mir, M.

Monnom, O.

Osten, W.

Park, Y.

Pedrini, G.

Pitter, M. C.

Popescu, G.

Requena, M. L. N.

Rogers, J.

See, C. W.

M. C. Pitter, C. W. See, and M. G. Somekh, Opt. Lett. 29, 1200 (2004).
[CrossRef] [PubMed]

M. G. Somekh, C. W. See, and J. Goh, Opt. Commun. 174, 75 (2000).
[CrossRef]

Somekh, M. G.

M. C. Pitter, C. W. See, and M. G. Somekh, Opt. Lett. 29, 1200 (2004).
[CrossRef] [PubMed]

M. G. Somekh, C. W. See, and J. Goh, Opt. Commun. 174, 75 (2000).
[CrossRef]

Tearney, G. J.

Unarunotai, S.

Vakoc, B. J.

Wang, Z.

Warner, P. J.

J. E. Baldwin, C. A. Haniff, C. D. Mackay, and P. J. Warner, Nature 320, 595 (1986).
[CrossRef]

Wirtz, D.

D. Wirtz, Annu. Rev. Biophys. 38, 301 (2009).
[CrossRef] [PubMed]

Yaqoob, Z.

Annu. Rev. Biophys. (1)

D. Wirtz, Annu. Rev. Biophys. 38, 301 (2009).
[CrossRef] [PubMed]

Appl. Opt. (1)

Nature (1)

J. E. Baldwin, C. A. Haniff, C. D. Mackay, and P. J. Warner, Nature 320, 595 (1986).
[CrossRef]

Opt. Commun. (1)

M. G. Somekh, C. W. See, and J. Goh, Opt. Commun. 174, 75 (2000).
[CrossRef]

Opt. Express (3)

Opt. Lett. (3)

Prog. Opt. (1)

K. Creath, Prog. Opt. 26, 349 (1988).
[CrossRef]

Other (2)

J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications (Roberts, 2007).

P. Jacquot and J. M. Fournier, in Interferometry in Speckle Light: Theory and Applications: Proceedings of the International Conference (Springer, 2000), pp. 25–28.

Supplementary Material (1)

» Media 1: MOV (3340 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Experimental setup and (b), (c) the advantage of using a diffraction grating. (a) Off-axis Mach–Zehnder interferometer. D, diffuser mounted on an electric motor (not shown); BS1 and BS2, cube beam splitters; L1, L2, and TL, lenses with focal lengths of 250, 250, and 200 mm , respectively; C, condenser lens; OL, objective lens; G, diffraction grating; A, iris diaphragm. For the conventional tilting a mirror method, the zeroth-order diffracted beam is selected by A and tilted by BS2. (b) Interference image taken without the diffraction grating. (c) Image taken with the grating in place. Only a 4 μm × 48 μm section of the entire field of view ( 36 μm × 48 μm ) is shown in (b) and (c) to save space. Scale bar, 5 μm .

Fig. 2
Fig. 2

Quantitative phase imaging of a live cell using ODSIM: (a) raw interference image, (c) processed quantitative phase image, and (e) numerically simulated DIC image for the coherent illumination. (b), (d), and (f) Same as (a), (c), and (e) but with dynamic speckle illumination. The insets in (a) and (b) are zoom-in images at the background by three folds. Scale bar, 10 μm . Color bar, phase in radians. Media 1 shows the dynamics of the intracellular particles in the same cell. Images are taken with a frame rate of 2 fps .

Fig. 3
Fig. 3

Depth selectivity of ODSIM. (a) Schematic diagram for beads in the sample plane. (b) and (c) Phase images taken without the diffuser with the objective foci located at the upper and lower dashed lines, respectively. (d) and (e) Same as (b) and (c) but with the use of the diffuser. The objective lens in the reference arm is also adjusted to match the speckle waves at each focus. Color bar, phase in radians. Scale bar, 10 μm .

Metrics