Abstract

Scanning optical coherence tomography (OCT) is limited in sensitivity and resolution by the restricted focal depth of the confocal detection scheme. Holoscopy, a combination of holography and Fourier-domain full-field OCT, is proposed as a way to detect photons from all depths of a sample volume simultaneously with uniform sensitivity and lateral resolution, even at high NAs. By using the scalar diffraction theory, as frequently applied in digital holographic imaging, we fully reconstruct the object field with depth-invariant imaging quality. In vivo imaging of human skin is demonstrated with an image quality comparable to conventionally scanned OCT.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Holmes, Proc. SPIE 7139, 713908 (2008).
    [CrossRef]
  2. R. A. Leitgeb, M. Villiger, A. H. Bachmann, L. Steinmann, and T. Lasser, Opt. Lett. 31, 2450 (2006).
    [CrossRef] [PubMed]
  3. T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, Nat. Phys. 3, 129, doi:10.1038/nphys514 (2007).
    [CrossRef]
  4. T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, Opt. Express 16, 2555 (2008).
    [CrossRef] [PubMed]
  5. L. Yu, B. Rao, J. Zhang, J. Su, Q. Wang, S. Guo, and Z. Chen, Opt. Express 15, 7634 (2007).
    [CrossRef] [PubMed]
  6. D. L. Marks, T. S. Ralston, S. A. Boppart, and P. S. Carney, J. Opt. Soc. Am. A 24, 1034 (2007).
    [CrossRef]
  7. M. K. Kim, SPIE Rev. 1, 018005 (2010).
    [CrossRef]
  8. P. Blazkiewicz, M. Gourlay, J. R. Tucker, A. D. Rakic, and A. V. Zvyagin, Appl. Opt. 44, 7722 (2005).
    [CrossRef] [PubMed]
  9. D. V. Shabanov, G. V. Geliknov, and V. M. Gelikonov, Laser Phys. Lett. 6, 753 (2009).
    [CrossRef]
  10. M. C. Potcoava and M. K. Kim, Meas. Sci. Technol. 19, 074010 (2008).
    [CrossRef]
  11. T. Bonin, G. Franke, M. Hagen-Eggert, P. Koch, and G. Hüttmann, Opt. Lett. 35, 3432 (2010).
    [CrossRef] [PubMed]
  12. U. Schnars and W. P. O. Jüptner, Meas. Sci. Technol. 13, R85 (2002).
    [CrossRef]
  13. P. D. Woolliams, R. A. Ferguson, C. Hart, A. Grimwood, and P. H. Tomlins, Appl. Opt. 49, 2014 (2010).
    [CrossRef] [PubMed]
  14. B. Považay, A. Unterhuber, B. Hermann, H. Sattmann, H. Arthaber, and W. Drexler, Opt. Express 14, 7661 (2006).
    [CrossRef] [PubMed]

2010

2009

D. V. Shabanov, G. V. Geliknov, and V. M. Gelikonov, Laser Phys. Lett. 6, 753 (2009).
[CrossRef]

2008

M. C. Potcoava and M. K. Kim, Meas. Sci. Technol. 19, 074010 (2008).
[CrossRef]

J. Holmes, Proc. SPIE 7139, 713908 (2008).
[CrossRef]

T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, Opt. Express 16, 2555 (2008).
[CrossRef] [PubMed]

2007

2006

2005

2002

U. Schnars and W. P. O. Jüptner, Meas. Sci. Technol. 13, R85 (2002).
[CrossRef]

Arthaber, H.

Bachmann, A. H.

Blazkiewicz, P.

Bonin, T.

Boppart, S. A.

Carney, P. S.

Chen, Z.

Drexler, W.

Ferguson, R. A.

Franke, G.

Geliknov, G. V.

D. V. Shabanov, G. V. Geliknov, and V. M. Gelikonov, Laser Phys. Lett. 6, 753 (2009).
[CrossRef]

Gelikonov, V. M.

D. V. Shabanov, G. V. Geliknov, and V. M. Gelikonov, Laser Phys. Lett. 6, 753 (2009).
[CrossRef]

Gourlay, M.

Grimwood, A.

Guo, S.

Hagen-Eggert, M.

Hart, C.

Hermann, B.

Holmes, J.

J. Holmes, Proc. SPIE 7139, 713908 (2008).
[CrossRef]

Hüttmann, G.

Kim, M. K.

M. K. Kim, SPIE Rev. 1, 018005 (2010).
[CrossRef]

M. C. Potcoava and M. K. Kim, Meas. Sci. Technol. 19, 074010 (2008).
[CrossRef]

Koch, P.

Lasser, T.

Leitgeb, R. A.

Marks, D. L.

Potcoava, M. C.

M. C. Potcoava and M. K. Kim, Meas. Sci. Technol. 19, 074010 (2008).
[CrossRef]

Považay, B.

Rakic, A. D.

Ralston, T. S.

Rao, B.

Sattmann, H.

Schnars, U.

U. Schnars and W. P. O. Jüptner, Meas. Sci. Technol. 13, R85 (2002).
[CrossRef]

Shabanov, D. V.

D. V. Shabanov, G. V. Geliknov, and V. M. Gelikonov, Laser Phys. Lett. 6, 753 (2009).
[CrossRef]

Steinmann, L.

Su, J.

Tomlins, P. H.

Tucker, J. R.

Unterhuber, A.

Villiger, M.

Wang, Q.

Woolliams, P. D.

Yu, L.

Zhang, J.

Zvyagin, A. V.

Appl. Opt.

J. Opt. Soc. Am. A

Laser Phys. Lett.

D. V. Shabanov, G. V. Geliknov, and V. M. Gelikonov, Laser Phys. Lett. 6, 753 (2009).
[CrossRef]

Meas. Sci. Technol.

M. C. Potcoava and M. K. Kim, Meas. Sci. Technol. 19, 074010 (2008).
[CrossRef]

U. Schnars and W. P. O. Jüptner, Meas. Sci. Technol. 13, R85 (2002).
[CrossRef]

Nat. Phys.

T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, Nat. Phys. 3, 129, doi:10.1038/nphys514 (2007).
[CrossRef]

Opt. Express

Opt. Lett.

Proc. SPIE

J. Holmes, Proc. SPIE 7139, 713908 (2008).
[CrossRef]

SPIE Rev.

M. K. Kim, SPIE Rev. 1, 018005 (2010).
[CrossRef]

Supplementary Material (2)

» Media 1: AVI (44026 KB)     
» Media 2: AVI (3017 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic setup of the holoscopy device.

Fig. 2
Fig. 2

Comparison of cross-sectional images taken from an OCT phantom by holoscopy and conventional scanning OCT. (a)–(c) Reconstruction of the holoscopic data for image planes of three different depths. (d) Fusion of the focal ranges of holoscopic reconstructions in five virtual focus positions, each 500 μm apart. The NA of the holoscopic images was 0.05. (e) Conventional B scan of the phantom at NA 0.06. The scale bars correspond to 0.1 mm .

Fig. 3
Fig. 3

Holoscopic images of a fingertip. The focus for numerical reconstruction was put in the layer of the perspiratory glands. (a) One cross-sectional image and (b) one en-face image from the reconstructed data cuboid are shown. Dashed lines show the position of the slices. Media 1 shows an animated image of the three orthogonal planes of the reconstructed volume, and Media 2 shows a 3D rendering.

Metrics