Abstract

We introduce a widefield CARS microscope implementation that uses a spatial light modulator to obtain extremely precise control over the pump/probe-beam incidence geometry, which provides the possibility to enhance the image contrast at specific target resonances by fine-tuning the incidence angles. We show how this technique can be used to optimize the image contrast between objects of different size and to practically eliminate the undesired signal from the solvent that embeds small target specimens. Changing the numerical aperture of the illumination from 1.27 to 1.24 improved the ratio of the signals of 500nm polystyrene beads and the agarose solvent by about 20dB.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. D. Duncan, J. Reintjes, and T. J. Manuccia, Opt. Lett. 7, 350 (1982).
    [CrossRef] [PubMed]
  2. A. Zumbusch, G. R. Holtom, and X. S. Xie, Phys. Rev. Lett. 82, 4142 (1999).
    [CrossRef]
  3. M. Müller and A. Zumbusch, Chem. Phys. Chem. 8, 2156(2007).
    [CrossRef] [PubMed]
  4. C. Heinrich, S. Bernet, and M. Ritsch-Marte, Appl. Phys. Lett. 84, 816 (2004).
    [CrossRef]
  5. I. Toytman, K. Cohn, T. Smith, D. Simanovskii, and D. Palanker, Opt. Lett. 32, 1941 (2007).
    [CrossRef] [PubMed]
  6. C. Heinrich, S. Bernet, and M. Ritsch-Marte, New J. Phys. 8, 36 (2006).
    [CrossRef]
  7. I. Toytman, D. Simanovskii, and D. Palanker, Opt. Express 17, 7339 (2009).
    [CrossRef] [PubMed]
  8. A. Volkmer, J. X. Cheng, and X. S. Xie, Phys. Rev. Lett. 87, 023901 (2001).
    [CrossRef]
  9. M. Müller, J. Squier, C. A. De Lange, and G. J. Brakenhoff, J. Microsc. 197, 150 (2000).
    [CrossRef] [PubMed]
  10. R. Fiolka, M. Beck, and A. Stemmer, Opt. Lett. 33, 1629(2008).
    [CrossRef] [PubMed]

2009 (1)

2008 (1)

2007 (2)

2006 (1)

C. Heinrich, S. Bernet, and M. Ritsch-Marte, New J. Phys. 8, 36 (2006).
[CrossRef]

2004 (1)

C. Heinrich, S. Bernet, and M. Ritsch-Marte, Appl. Phys. Lett. 84, 816 (2004).
[CrossRef]

2001 (1)

A. Volkmer, J. X. Cheng, and X. S. Xie, Phys. Rev. Lett. 87, 023901 (2001).
[CrossRef]

2000 (1)

M. Müller, J. Squier, C. A. De Lange, and G. J. Brakenhoff, J. Microsc. 197, 150 (2000).
[CrossRef] [PubMed]

1999 (1)

A. Zumbusch, G. R. Holtom, and X. S. Xie, Phys. Rev. Lett. 82, 4142 (1999).
[CrossRef]

1982 (1)

Beck, M.

Bernet, S.

C. Heinrich, S. Bernet, and M. Ritsch-Marte, New J. Phys. 8, 36 (2006).
[CrossRef]

C. Heinrich, S. Bernet, and M. Ritsch-Marte, Appl. Phys. Lett. 84, 816 (2004).
[CrossRef]

Brakenhoff, G. J.

M. Müller, J. Squier, C. A. De Lange, and G. J. Brakenhoff, J. Microsc. 197, 150 (2000).
[CrossRef] [PubMed]

Cheng, J. X.

A. Volkmer, J. X. Cheng, and X. S. Xie, Phys. Rev. Lett. 87, 023901 (2001).
[CrossRef]

Cohn, K.

De Lange, C. A.

M. Müller, J. Squier, C. A. De Lange, and G. J. Brakenhoff, J. Microsc. 197, 150 (2000).
[CrossRef] [PubMed]

Duncan, M. D.

Fiolka, R.

Heinrich, C.

C. Heinrich, S. Bernet, and M. Ritsch-Marte, New J. Phys. 8, 36 (2006).
[CrossRef]

C. Heinrich, S. Bernet, and M. Ritsch-Marte, Appl. Phys. Lett. 84, 816 (2004).
[CrossRef]

Holtom, G. R.

A. Zumbusch, G. R. Holtom, and X. S. Xie, Phys. Rev. Lett. 82, 4142 (1999).
[CrossRef]

Manuccia, T. J.

Müller, M.

M. Müller and A. Zumbusch, Chem. Phys. Chem. 8, 2156(2007).
[CrossRef] [PubMed]

M. Müller, J. Squier, C. A. De Lange, and G. J. Brakenhoff, J. Microsc. 197, 150 (2000).
[CrossRef] [PubMed]

Palanker, D.

Reintjes, J.

Ritsch-Marte, M.

C. Heinrich, S. Bernet, and M. Ritsch-Marte, New J. Phys. 8, 36 (2006).
[CrossRef]

C. Heinrich, S. Bernet, and M. Ritsch-Marte, Appl. Phys. Lett. 84, 816 (2004).
[CrossRef]

Simanovskii, D.

Smith, T.

Squier, J.

M. Müller, J. Squier, C. A. De Lange, and G. J. Brakenhoff, J. Microsc. 197, 150 (2000).
[CrossRef] [PubMed]

Stemmer, A.

Toytman, I.

Volkmer, A.

A. Volkmer, J. X. Cheng, and X. S. Xie, Phys. Rev. Lett. 87, 023901 (2001).
[CrossRef]

Xie, X. S.

A. Volkmer, J. X. Cheng, and X. S. Xie, Phys. Rev. Lett. 87, 023901 (2001).
[CrossRef]

A. Zumbusch, G. R. Holtom, and X. S. Xie, Phys. Rev. Lett. 82, 4142 (1999).
[CrossRef]

Zumbusch, A.

M. Müller and A. Zumbusch, Chem. Phys. Chem. 8, 2156(2007).
[CrossRef] [PubMed]

A. Zumbusch, G. R. Holtom, and X. S. Xie, Phys. Rev. Lett. 82, 4142 (1999).
[CrossRef]

Appl. Phys. Lett. (1)

C. Heinrich, S. Bernet, and M. Ritsch-Marte, Appl. Phys. Lett. 84, 816 (2004).
[CrossRef]

Chem. Phys. Chem. (1)

M. Müller and A. Zumbusch, Chem. Phys. Chem. 8, 2156(2007).
[CrossRef] [PubMed]

J. Microsc. (1)

M. Müller, J. Squier, C. A. De Lange, and G. J. Brakenhoff, J. Microsc. 197, 150 (2000).
[CrossRef] [PubMed]

New J. Phys. (1)

C. Heinrich, S. Bernet, and M. Ritsch-Marte, New J. Phys. 8, 36 (2006).
[CrossRef]

Opt. Express (1)

Opt. Lett. (3)

Phys. Rev. Lett. (2)

A. Volkmer, J. X. Cheng, and X. S. Xie, Phys. Rev. Lett. 87, 023901 (2001).
[CrossRef]

A. Zumbusch, G. R. Holtom, and X. S. Xie, Phys. Rev. Lett. 82, 4142 (1999).
[CrossRef]

Supplementary Material (1)

» Media 1: AVI (1126 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) extremely folded box-CARS beam geometry; (b) sample cell; (c) CARS WF microscope with an SLM.

Fig. 2
Fig. 2

Left, comparison of the NA-dependence of the total CARS signal of PS beads with 2.8 μm and 0.5 μm diameter; right, the CARS images show beads of 1.4 and 2.8 μm diameter, taken at NA = 1.27 and 1.24; the plots below show vertical sections through the beads.

Fig. 3
Fig. 3

Left, NA-dependence of the normalized signal strengths and the signal ratio of a 500 nm PS bead and agarose gel; right, 500 nm -bead in agarose gel, imaged at NA = 1.27 and 1.24. Reducing the NA improved the signal ratio bead/agarose by a factor of 70 (Media 1); the plots below the images show vertical sections through the bead.

Metrics