Abstract

Organic and inorganic polymeric thin films have numerous applications, including solar cells, biodetection, and nanocomposites. Improving our understanding of the fundamental material behavior is critical to designing polymers with ideal behavior and increased lifetime. However, there are limited nondestructive characterization methods that are able to perform these high-resolution measurements. In this Letter, we demonstrate a method that is able to detect temperature-induced changes in the refractive index of polystyrene polymer thin films as small as 107. This approach is based on optical microcavity resonators. The experimental results agree well with the theoretical simulations.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Huang and D. R. Paul, Macromolecules 39, 1554 (2006).
    [CrossRef]
  2. J. M. Kropka, V. Pryamitsyn, and V. Ganesan, Phys. Rev. Lett. 101, 075702 (2008).
    [CrossRef] [PubMed]
  3. M. K. Mundra, C. J. Ellison, R. E. Behling, and J. M. Torkelson, Polymer 47, 7747 (2006).
    [CrossRef]
  4. R. D. Priestley, C. J. Ellison, L. J. Broadbelt, and J. M. Torkelson, Science 309, 456 (2005).
    [CrossRef] [PubMed]
  5. Z. Burghard, L. Zini, V. Srot, P. Bellina, P. A. van Aken, and J. Bill, Nano Lett. 9, 4103 (2009).
    [CrossRef] [PubMed]
  6. T. Carmon, L. Yang, and K. J. Vahala, Opt. Express 12, 4742 (2004).
    [CrossRef] [PubMed]
  7. G. D. Kim, H. S. Lee, C. H. Park, S. S. Lee, B. T. Lim, H. K. Bae, and W. G. Lee, Opt. Express 18, 22215 (2010).
    [CrossRef] [PubMed]
  8. L. J. Davis and M. Deutsch, Rev. Sci. Instrum. 81, 114905 (2010).
    [CrossRef] [PubMed]
  9. H.-S. Choi and A. M. Armani, Appl. Phys. Lett. 97, 223306 (2010).
    [CrossRef]
  10. H. K. Hunt and A. M. Armani, Nanoscale 2, 1544 (2010).
    [CrossRef] [PubMed]
  11. M. Han and A. Wang, Opt. Lett. 32, 1800 (2007).
    [CrossRef] [PubMed]
  12. D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, Nature 421, 925 (2003).
    [CrossRef] [PubMed]
  13. H.-S. Choi, X. Zhang, and A. M. Armani, Opt. Lett. 35, 459 (2010).
    [CrossRef] [PubMed]
  14. A. Yariv, Electron. Lett. 36, 321 (2000).
    [CrossRef]
  15. M. J. Weber, Handbook of Optical Materials (CRC Press, 2003).
  16. L. He, Y. F. Xiao, C. Dong, J. Zhu, V. Gaddam, and L. Yang, Appl. Phys. Lett. 93, 201102 (2008).
    [CrossRef]
  17. R. Vendamme, S. Y. Onoue, A. Nakao, and T. Kunitake, Nat. Mater. 5, 494 (2006).
    [CrossRef] [PubMed]
  18. T. Kietzke, D. Neher, K. Landfester, R. Montenegro, R. Guntner, and U. Scherf, Nat. Mater. 2, 408 (2003).
    [CrossRef] [PubMed]

2010 (5)

L. J. Davis and M. Deutsch, Rev. Sci. Instrum. 81, 114905 (2010).
[CrossRef] [PubMed]

H.-S. Choi and A. M. Armani, Appl. Phys. Lett. 97, 223306 (2010).
[CrossRef]

H. K. Hunt and A. M. Armani, Nanoscale 2, 1544 (2010).
[CrossRef] [PubMed]

H.-S. Choi, X. Zhang, and A. M. Armani, Opt. Lett. 35, 459 (2010).
[CrossRef] [PubMed]

G. D. Kim, H. S. Lee, C. H. Park, S. S. Lee, B. T. Lim, H. K. Bae, and W. G. Lee, Opt. Express 18, 22215 (2010).
[CrossRef] [PubMed]

2009 (1)

Z. Burghard, L. Zini, V. Srot, P. Bellina, P. A. van Aken, and J. Bill, Nano Lett. 9, 4103 (2009).
[CrossRef] [PubMed]

2008 (2)

J. M. Kropka, V. Pryamitsyn, and V. Ganesan, Phys. Rev. Lett. 101, 075702 (2008).
[CrossRef] [PubMed]

L. He, Y. F. Xiao, C. Dong, J. Zhu, V. Gaddam, and L. Yang, Appl. Phys. Lett. 93, 201102 (2008).
[CrossRef]

2007 (1)

2006 (3)

R. Vendamme, S. Y. Onoue, A. Nakao, and T. Kunitake, Nat. Mater. 5, 494 (2006).
[CrossRef] [PubMed]

M. K. Mundra, C. J. Ellison, R. E. Behling, and J. M. Torkelson, Polymer 47, 7747 (2006).
[CrossRef]

Y. Huang and D. R. Paul, Macromolecules 39, 1554 (2006).
[CrossRef]

2005 (1)

R. D. Priestley, C. J. Ellison, L. J. Broadbelt, and J. M. Torkelson, Science 309, 456 (2005).
[CrossRef] [PubMed]

2004 (1)

2003 (2)

T. Kietzke, D. Neher, K. Landfester, R. Montenegro, R. Guntner, and U. Scherf, Nat. Mater. 2, 408 (2003).
[CrossRef] [PubMed]

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, Nature 421, 925 (2003).
[CrossRef] [PubMed]

2000 (1)

A. Yariv, Electron. Lett. 36, 321 (2000).
[CrossRef]

Armani, A. M.

H. K. Hunt and A. M. Armani, Nanoscale 2, 1544 (2010).
[CrossRef] [PubMed]

H.-S. Choi, X. Zhang, and A. M. Armani, Opt. Lett. 35, 459 (2010).
[CrossRef] [PubMed]

H.-S. Choi and A. M. Armani, Appl. Phys. Lett. 97, 223306 (2010).
[CrossRef]

Armani, D. K.

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, Nature 421, 925 (2003).
[CrossRef] [PubMed]

Bae, H. K.

Behling, R. E.

M. K. Mundra, C. J. Ellison, R. E. Behling, and J. M. Torkelson, Polymer 47, 7747 (2006).
[CrossRef]

Bellina, P.

Z. Burghard, L. Zini, V. Srot, P. Bellina, P. A. van Aken, and J. Bill, Nano Lett. 9, 4103 (2009).
[CrossRef] [PubMed]

Bill, J.

Z. Burghard, L. Zini, V. Srot, P. Bellina, P. A. van Aken, and J. Bill, Nano Lett. 9, 4103 (2009).
[CrossRef] [PubMed]

Broadbelt, L. J.

R. D. Priestley, C. J. Ellison, L. J. Broadbelt, and J. M. Torkelson, Science 309, 456 (2005).
[CrossRef] [PubMed]

Burghard, Z.

Z. Burghard, L. Zini, V. Srot, P. Bellina, P. A. van Aken, and J. Bill, Nano Lett. 9, 4103 (2009).
[CrossRef] [PubMed]

Carmon, T.

Choi, H.-S.

H.-S. Choi and A. M. Armani, Appl. Phys. Lett. 97, 223306 (2010).
[CrossRef]

H.-S. Choi, X. Zhang, and A. M. Armani, Opt. Lett. 35, 459 (2010).
[CrossRef] [PubMed]

Davis, L. J.

L. J. Davis and M. Deutsch, Rev. Sci. Instrum. 81, 114905 (2010).
[CrossRef] [PubMed]

Deutsch, M.

L. J. Davis and M. Deutsch, Rev. Sci. Instrum. 81, 114905 (2010).
[CrossRef] [PubMed]

Dong, C.

L. He, Y. F. Xiao, C. Dong, J. Zhu, V. Gaddam, and L. Yang, Appl. Phys. Lett. 93, 201102 (2008).
[CrossRef]

Ellison, C. J.

M. K. Mundra, C. J. Ellison, R. E. Behling, and J. M. Torkelson, Polymer 47, 7747 (2006).
[CrossRef]

R. D. Priestley, C. J. Ellison, L. J. Broadbelt, and J. M. Torkelson, Science 309, 456 (2005).
[CrossRef] [PubMed]

Gaddam, V.

L. He, Y. F. Xiao, C. Dong, J. Zhu, V. Gaddam, and L. Yang, Appl. Phys. Lett. 93, 201102 (2008).
[CrossRef]

Ganesan, V.

J. M. Kropka, V. Pryamitsyn, and V. Ganesan, Phys. Rev. Lett. 101, 075702 (2008).
[CrossRef] [PubMed]

Guntner, R.

T. Kietzke, D. Neher, K. Landfester, R. Montenegro, R. Guntner, and U. Scherf, Nat. Mater. 2, 408 (2003).
[CrossRef] [PubMed]

Han, M.

He, L.

L. He, Y. F. Xiao, C. Dong, J. Zhu, V. Gaddam, and L. Yang, Appl. Phys. Lett. 93, 201102 (2008).
[CrossRef]

Huang, Y.

Y. Huang and D. R. Paul, Macromolecules 39, 1554 (2006).
[CrossRef]

Hunt, H. K.

H. K. Hunt and A. M. Armani, Nanoscale 2, 1544 (2010).
[CrossRef] [PubMed]

Kietzke, T.

T. Kietzke, D. Neher, K. Landfester, R. Montenegro, R. Guntner, and U. Scherf, Nat. Mater. 2, 408 (2003).
[CrossRef] [PubMed]

Kim, G. D.

Kippenberg, T. J.

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, Nature 421, 925 (2003).
[CrossRef] [PubMed]

Kropka, J. M.

J. M. Kropka, V. Pryamitsyn, and V. Ganesan, Phys. Rev. Lett. 101, 075702 (2008).
[CrossRef] [PubMed]

Kunitake, T.

R. Vendamme, S. Y. Onoue, A. Nakao, and T. Kunitake, Nat. Mater. 5, 494 (2006).
[CrossRef] [PubMed]

Landfester, K.

T. Kietzke, D. Neher, K. Landfester, R. Montenegro, R. Guntner, and U. Scherf, Nat. Mater. 2, 408 (2003).
[CrossRef] [PubMed]

Lee, H. S.

Lee, S. S.

Lee, W. G.

Lim, B. T.

Montenegro, R.

T. Kietzke, D. Neher, K. Landfester, R. Montenegro, R. Guntner, and U. Scherf, Nat. Mater. 2, 408 (2003).
[CrossRef] [PubMed]

Mundra, M. K.

M. K. Mundra, C. J. Ellison, R. E. Behling, and J. M. Torkelson, Polymer 47, 7747 (2006).
[CrossRef]

Nakao, A.

R. Vendamme, S. Y. Onoue, A. Nakao, and T. Kunitake, Nat. Mater. 5, 494 (2006).
[CrossRef] [PubMed]

Neher, D.

T. Kietzke, D. Neher, K. Landfester, R. Montenegro, R. Guntner, and U. Scherf, Nat. Mater. 2, 408 (2003).
[CrossRef] [PubMed]

Onoue, S. Y.

R. Vendamme, S. Y. Onoue, A. Nakao, and T. Kunitake, Nat. Mater. 5, 494 (2006).
[CrossRef] [PubMed]

Park, C. H.

Paul, D. R.

Y. Huang and D. R. Paul, Macromolecules 39, 1554 (2006).
[CrossRef]

Priestley, R. D.

R. D. Priestley, C. J. Ellison, L. J. Broadbelt, and J. M. Torkelson, Science 309, 456 (2005).
[CrossRef] [PubMed]

Pryamitsyn, V.

J. M. Kropka, V. Pryamitsyn, and V. Ganesan, Phys. Rev. Lett. 101, 075702 (2008).
[CrossRef] [PubMed]

Scherf, U.

T. Kietzke, D. Neher, K. Landfester, R. Montenegro, R. Guntner, and U. Scherf, Nat. Mater. 2, 408 (2003).
[CrossRef] [PubMed]

Spillane, S. M.

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, Nature 421, 925 (2003).
[CrossRef] [PubMed]

Srot, V.

Z. Burghard, L. Zini, V. Srot, P. Bellina, P. A. van Aken, and J. Bill, Nano Lett. 9, 4103 (2009).
[CrossRef] [PubMed]

Torkelson, J. M.

M. K. Mundra, C. J. Ellison, R. E. Behling, and J. M. Torkelson, Polymer 47, 7747 (2006).
[CrossRef]

R. D. Priestley, C. J. Ellison, L. J. Broadbelt, and J. M. Torkelson, Science 309, 456 (2005).
[CrossRef] [PubMed]

Vahala, K. J.

T. Carmon, L. Yang, and K. J. Vahala, Opt. Express 12, 4742 (2004).
[CrossRef] [PubMed]

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, Nature 421, 925 (2003).
[CrossRef] [PubMed]

van Aken, P. A.

Z. Burghard, L. Zini, V. Srot, P. Bellina, P. A. van Aken, and J. Bill, Nano Lett. 9, 4103 (2009).
[CrossRef] [PubMed]

Vendamme, R.

R. Vendamme, S. Y. Onoue, A. Nakao, and T. Kunitake, Nat. Mater. 5, 494 (2006).
[CrossRef] [PubMed]

Wang, A.

Weber, M. J.

M. J. Weber, Handbook of Optical Materials (CRC Press, 2003).

Xiao, Y. F.

L. He, Y. F. Xiao, C. Dong, J. Zhu, V. Gaddam, and L. Yang, Appl. Phys. Lett. 93, 201102 (2008).
[CrossRef]

Yang, L.

L. He, Y. F. Xiao, C. Dong, J. Zhu, V. Gaddam, and L. Yang, Appl. Phys. Lett. 93, 201102 (2008).
[CrossRef]

T. Carmon, L. Yang, and K. J. Vahala, Opt. Express 12, 4742 (2004).
[CrossRef] [PubMed]

Yariv, A.

A. Yariv, Electron. Lett. 36, 321 (2000).
[CrossRef]

Zhang, X.

Zhu, J.

L. He, Y. F. Xiao, C. Dong, J. Zhu, V. Gaddam, and L. Yang, Appl. Phys. Lett. 93, 201102 (2008).
[CrossRef]

Zini, L.

Z. Burghard, L. Zini, V. Srot, P. Bellina, P. A. van Aken, and J. Bill, Nano Lett. 9, 4103 (2009).
[CrossRef] [PubMed]

Appl. Phys. Lett. (2)

H.-S. Choi and A. M. Armani, Appl. Phys. Lett. 97, 223306 (2010).
[CrossRef]

L. He, Y. F. Xiao, C. Dong, J. Zhu, V. Gaddam, and L. Yang, Appl. Phys. Lett. 93, 201102 (2008).
[CrossRef]

Electron. Lett. (1)

A. Yariv, Electron. Lett. 36, 321 (2000).
[CrossRef]

Macromolecules (1)

Y. Huang and D. R. Paul, Macromolecules 39, 1554 (2006).
[CrossRef]

Nano Lett. (1)

Z. Burghard, L. Zini, V. Srot, P. Bellina, P. A. van Aken, and J. Bill, Nano Lett. 9, 4103 (2009).
[CrossRef] [PubMed]

Nanoscale (1)

H. K. Hunt and A. M. Armani, Nanoscale 2, 1544 (2010).
[CrossRef] [PubMed]

Nat. Mater. (2)

R. Vendamme, S. Y. Onoue, A. Nakao, and T. Kunitake, Nat. Mater. 5, 494 (2006).
[CrossRef] [PubMed]

T. Kietzke, D. Neher, K. Landfester, R. Montenegro, R. Guntner, and U. Scherf, Nat. Mater. 2, 408 (2003).
[CrossRef] [PubMed]

Nature (1)

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, Nature 421, 925 (2003).
[CrossRef] [PubMed]

Opt. Express (2)

Opt. Lett. (2)

Phys. Rev. Lett. (1)

J. M. Kropka, V. Pryamitsyn, and V. Ganesan, Phys. Rev. Lett. 101, 075702 (2008).
[CrossRef] [PubMed]

Polymer (1)

M. K. Mundra, C. J. Ellison, R. E. Behling, and J. M. Torkelson, Polymer 47, 7747 (2006).
[CrossRef]

Rev. Sci. Instrum. (1)

L. J. Davis and M. Deutsch, Rev. Sci. Instrum. 81, 114905 (2010).
[CrossRef] [PubMed]

Science (1)

R. D. Priestley, C. J. Ellison, L. J. Broadbelt, and J. M. Torkelson, Science 309, 456 (2005).
[CrossRef] [PubMed]

Other (1)

M. J. Weber, Handbook of Optical Materials (CRC Press, 2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Hybrid optical microtoroid resonant cavity. (a) Pov-Ray rendering of the hybrid device. The whispering gallery mode is confined within the polymer-coated device. Part of the polymer film is cut away in the rendering for clarity. (b) Optical micrograph of a hybrid device.

Fig. 2
Fig. 2

Comparison of sensor response between silica and hybrid devices. (a) The Δ T is the same for each increment. (b) The Δ T is increasing for each increment. Because of the polymer layer, the hybrid device has a significantly larger response. Note that the y axis is the absolute value of the resonant wavelength shift or the magnitude, for easy comparison between the two devices.

Fig. 3
Fig. 3

The results from experiments like those shown in Fig. 2 were compiled to show the shift versus temperature for both the hybrid and silica devices. Additionally, the theory based on Eq. (1) is included. The shift for the silica device is significantly smaller than the shift for the hybrid device, and the theory and experiment are in good agreement.

Fig. 4
Fig. 4

Reproducibility of results. (a) The measurement was performed iteratively. (b) The data in part (a) are replotted to emphasize the hysteretic behavior due to the heating element.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δ λ / Δ T = λ 0 ( ε eff + ( d n eff / d T ) / n eff ) ,

Metrics