Abstract

Here we demonstrate a unique optical sensing scheme based on deep-UV photochemical perturbation in combination with difference spectroscopy. Applying a sequence of optical probing, UV-laser-induced perturbation, and repeat optical probing coupled with difference spectroscopy provides a new spectral signature. We show a selective (sevenfold difference) optical response using a fluorescence probe for binary mixtures of organic dyes, and generate complementary spectral information derived from Raman scattering of the dipeptide glycine-glycine. We further extend the methodology to fluorescence-based imaging of an organic matrix.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Gorner, J. Photochem. Photobiol. B 26, 117 (1994).
    [CrossRef] [PubMed]
  2. B. T. Fisher and D. W. Hahn, Appl. Opt. 43, 5443 (2004).
    [CrossRef] [PubMed]
  3. P. Lagant, G. Vergoten, M. H. Loucheux-Lefebvre, and G. Fleury, Biopolymers 22, 1267 (1983).
    [CrossRef] [PubMed]
  4. S. E. Smith, K. D. Buchanan, and D. W. Hahn, Proc. SPIE 7674, 767409 (2010).
    [CrossRef]
  5. K. Bagley, G. Dollinger, L. Eisenstein, A. K. Singh, and L. Zimanyi, Proc. Natl. Acad. Sci. USA 79, 4972 (1982).
    [CrossRef] [PubMed]
  6. E. A. J. Reits and J. J. Neefjes, Nat. Cell Biol. 3, E145 (2001).
    [CrossRef] [PubMed]

2010

S. E. Smith, K. D. Buchanan, and D. W. Hahn, Proc. SPIE 7674, 767409 (2010).
[CrossRef]

2004

2001

E. A. J. Reits and J. J. Neefjes, Nat. Cell Biol. 3, E145 (2001).
[CrossRef] [PubMed]

1994

H. Gorner, J. Photochem. Photobiol. B 26, 117 (1994).
[CrossRef] [PubMed]

1983

P. Lagant, G. Vergoten, M. H. Loucheux-Lefebvre, and G. Fleury, Biopolymers 22, 1267 (1983).
[CrossRef] [PubMed]

1982

K. Bagley, G. Dollinger, L. Eisenstein, A. K. Singh, and L. Zimanyi, Proc. Natl. Acad. Sci. USA 79, 4972 (1982).
[CrossRef] [PubMed]

Bagley, K.

K. Bagley, G. Dollinger, L. Eisenstein, A. K. Singh, and L. Zimanyi, Proc. Natl. Acad. Sci. USA 79, 4972 (1982).
[CrossRef] [PubMed]

Buchanan, K. D.

S. E. Smith, K. D. Buchanan, and D. W. Hahn, Proc. SPIE 7674, 767409 (2010).
[CrossRef]

Dollinger, G.

K. Bagley, G. Dollinger, L. Eisenstein, A. K. Singh, and L. Zimanyi, Proc. Natl. Acad. Sci. USA 79, 4972 (1982).
[CrossRef] [PubMed]

Eisenstein, L.

K. Bagley, G. Dollinger, L. Eisenstein, A. K. Singh, and L. Zimanyi, Proc. Natl. Acad. Sci. USA 79, 4972 (1982).
[CrossRef] [PubMed]

Fisher, B. T.

Fleury, G.

P. Lagant, G. Vergoten, M. H. Loucheux-Lefebvre, and G. Fleury, Biopolymers 22, 1267 (1983).
[CrossRef] [PubMed]

Gorner, H.

H. Gorner, J. Photochem. Photobiol. B 26, 117 (1994).
[CrossRef] [PubMed]

Hahn, D. W.

S. E. Smith, K. D. Buchanan, and D. W. Hahn, Proc. SPIE 7674, 767409 (2010).
[CrossRef]

B. T. Fisher and D. W. Hahn, Appl. Opt. 43, 5443 (2004).
[CrossRef] [PubMed]

Lagant, P.

P. Lagant, G. Vergoten, M. H. Loucheux-Lefebvre, and G. Fleury, Biopolymers 22, 1267 (1983).
[CrossRef] [PubMed]

Loucheux-Lefebvre, M. H.

P. Lagant, G. Vergoten, M. H. Loucheux-Lefebvre, and G. Fleury, Biopolymers 22, 1267 (1983).
[CrossRef] [PubMed]

Neefjes, J. J.

E. A. J. Reits and J. J. Neefjes, Nat. Cell Biol. 3, E145 (2001).
[CrossRef] [PubMed]

Reits, E. A. J.

E. A. J. Reits and J. J. Neefjes, Nat. Cell Biol. 3, E145 (2001).
[CrossRef] [PubMed]

Singh, A. K.

K. Bagley, G. Dollinger, L. Eisenstein, A. K. Singh, and L. Zimanyi, Proc. Natl. Acad. Sci. USA 79, 4972 (1982).
[CrossRef] [PubMed]

Smith, S. E.

S. E. Smith, K. D. Buchanan, and D. W. Hahn, Proc. SPIE 7674, 767409 (2010).
[CrossRef]

Vergoten, G.

P. Lagant, G. Vergoten, M. H. Loucheux-Lefebvre, and G. Fleury, Biopolymers 22, 1267 (1983).
[CrossRef] [PubMed]

Zimanyi, L.

K. Bagley, G. Dollinger, L. Eisenstein, A. K. Singh, and L. Zimanyi, Proc. Natl. Acad. Sci. USA 79, 4972 (1982).
[CrossRef] [PubMed]

Appl. Opt.

Biopolymers

P. Lagant, G. Vergoten, M. H. Loucheux-Lefebvre, and G. Fleury, Biopolymers 22, 1267 (1983).
[CrossRef] [PubMed]

J. Photochem. Photobiol. B

H. Gorner, J. Photochem. Photobiol. B 26, 117 (1994).
[CrossRef] [PubMed]

Nat. Cell Biol.

E. A. J. Reits and J. J. Neefjes, Nat. Cell Biol. 3, E145 (2001).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. USA

K. Bagley, G. Dollinger, L. Eisenstein, A. K. Singh, and L. Zimanyi, Proc. Natl. Acad. Sci. USA 79, 4972 (1982).
[CrossRef] [PubMed]

Proc. SPIE

S. E. Smith, K. D. Buchanan, and D. W. Hahn, Proc. SPIE 7674, 767409 (2010).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Fluorescence spectra recorded from C450/BBQ thin films before (Pre) and after (Post) exposure to 250 pulses from the 193 nm perturbation laser. Both spectra have the same scale, and are corrected for relative detector response. The lower spectrum corresponds to the difference between the postperturbation and preperturbation spectra.

Fig. 2
Fig. 2

Number of peptide bonds in the collagen solution sample volume as a function of incident laser pulses for 193 and 355 nm perturbation laser wavelengths.

Fig. 3
Fig. 3

Upper curve is the DLIPS spectrum of a Gly-Gly thin film corresponding to 700 perturbation pulses from the 193 nm excimer laser. The lower curve corresponds to a traditional Raman spectrum of a Gly-Gly thin film. For calculation of the DLIPS spectrum, the preperturbation and postpertur bation Raman spectra were normalized to the 968 cm 1 C C Raman band. Peak labels A–G indicate corresponding peak pairs between the Raman and DLIPS spectra, with no shifting of peaks observed between pairs.

Fig. 4
Fig. 4

(a)    355 nm fluorescence image recorded from white card stock prior to laser perturbation. (b)  355 nm fluorescence image recorded from the same spot as (a), following laser perturbation using 25 193 nm laser pulses per grid point. (c) DLIPS image created by subtracting the preperturbation image (a) directly from the postperturbation image (b). (a) and (b) have the identical false-color intensity scale (blue to red indicating increased intensity). (c) has a different intensity scale, with white (zero counts) to blue indicating decreased intensity counts. The scale bar equals 2 mm .

Metrics