Abstract

A major limitation of any type of microscope is the penetration depth in turbid tissue. Here, we demonstrate a fundamentally novel kind of fluorescence microscope that images through optically thick turbid layers. The microscope uses scattered light, rather than light propagating along a straight path, for imaging with subwavelength resolution. Our method uses constructive interference to focus scattered laser light through the turbid layer. Microscopic fluorescent structures behind the layer were imaged by raster scanning the focus.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. J. Stephens and V. J. Allan, Science 300, 82 (2007).
    [CrossRef]
  2. V. Ntziachristos, Annu. Rev. Biomed. Eng. 8, 1 (2006).
    [CrossRef] [PubMed]
  3. F. Helmchen and W. Denk, Nat. Methods 2, 932 (2005).
    [CrossRef] [PubMed]
  4. A.Diaspro, ed., Confocal and Two-Photon Microscopy: Foundations, Applications and Advances (Wiley-Liss, 2002).
  5. A. Corlu, R. Choe, T. Durduran, M. A. Rosen, M. Schweiger, S. R. Arridge, M. D. Schnall, and A. G. Yodh, Opt. Express 15, 6696 (2007).
    [CrossRef] [PubMed]
  6. C. Vinegoni, C. Pitsouli, D. Razansky, N. Perrimon, and V. Ntziachristos, Nat. Methods 5, 45 (2008).
    [CrossRef]
  7. Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, Nat. Photonics 2, 110 (2008).
    [CrossRef] [PubMed]
  8. G. Lerosey, J. de Rosny, A. Tourin, and M. Fink, Science 315, 1120 (2007).
    [CrossRef] [PubMed]
  9. I. M. Vellekoop and A. P. Mosk, Opt. Lett. 32, 2309 (2007).
    [CrossRef] [PubMed]
  10. S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. Boccara, and S. Gigan, Phys. Rev. Lett. 104, 100601 (2010).
    [CrossRef] [PubMed]
  11. D. L. Fried, J. Opt. Soc. Am. 72, 52 (1982).
    [CrossRef]
  12. S. Feng, C. Kane, P. A. Lee, and A. D. Stone, Phys. Rev. Lett. 61, 834 (1988).
    [CrossRef] [PubMed]
  13. I. Freund, M. Rosenbluh, and S. Feng, Phys. Rev. Lett. 61, 2328 (1988).
    [CrossRef] [PubMed]
  14. R. K. Tyson, Principles of Adaptive Optics (Academic, 1998).
  15. I. M. Vellekoop, E. G. van Putten, A. Lagendijk, and A. P. Mosk, Opt. Express 16, 67 (2008).
    [CrossRef] [PubMed]
  16. I. M. Vellekoop, A. Lagendijk, and A. P. Mosk, Nat. Photonics, doi:10.1038/nphoton.2010.3.

2010 (1)

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. Boccara, and S. Gigan, Phys. Rev. Lett. 104, 100601 (2010).
[CrossRef] [PubMed]

2008 (3)

I. M. Vellekoop, E. G. van Putten, A. Lagendijk, and A. P. Mosk, Opt. Express 16, 67 (2008).
[CrossRef] [PubMed]

C. Vinegoni, C. Pitsouli, D. Razansky, N. Perrimon, and V. Ntziachristos, Nat. Methods 5, 45 (2008).
[CrossRef]

Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, Nat. Photonics 2, 110 (2008).
[CrossRef] [PubMed]

2007 (4)

2006 (1)

V. Ntziachristos, Annu. Rev. Biomed. Eng. 8, 1 (2006).
[CrossRef] [PubMed]

2005 (1)

F. Helmchen and W. Denk, Nat. Methods 2, 932 (2005).
[CrossRef] [PubMed]

2002 (1)

A.Diaspro, ed., Confocal and Two-Photon Microscopy: Foundations, Applications and Advances (Wiley-Liss, 2002).

1998 (1)

R. K. Tyson, Principles of Adaptive Optics (Academic, 1998).

1988 (2)

S. Feng, C. Kane, P. A. Lee, and A. D. Stone, Phys. Rev. Lett. 61, 834 (1988).
[CrossRef] [PubMed]

I. Freund, M. Rosenbluh, and S. Feng, Phys. Rev. Lett. 61, 2328 (1988).
[CrossRef] [PubMed]

1982 (1)

Allan, V. J.

D. J. Stephens and V. J. Allan, Science 300, 82 (2007).
[CrossRef]

Arridge, S. R.

Boccara, A.

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. Boccara, and S. Gigan, Phys. Rev. Lett. 104, 100601 (2010).
[CrossRef] [PubMed]

Carminati, R.

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. Boccara, and S. Gigan, Phys. Rev. Lett. 104, 100601 (2010).
[CrossRef] [PubMed]

Choe, R.

Corlu, A.

de Rosny, J.

G. Lerosey, J. de Rosny, A. Tourin, and M. Fink, Science 315, 1120 (2007).
[CrossRef] [PubMed]

Denk, W.

F. Helmchen and W. Denk, Nat. Methods 2, 932 (2005).
[CrossRef] [PubMed]

Durduran, T.

Feld, M. S.

Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, Nat. Photonics 2, 110 (2008).
[CrossRef] [PubMed]

Feng, S.

S. Feng, C. Kane, P. A. Lee, and A. D. Stone, Phys. Rev. Lett. 61, 834 (1988).
[CrossRef] [PubMed]

I. Freund, M. Rosenbluh, and S. Feng, Phys. Rev. Lett. 61, 2328 (1988).
[CrossRef] [PubMed]

Fink, M.

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. Boccara, and S. Gigan, Phys. Rev. Lett. 104, 100601 (2010).
[CrossRef] [PubMed]

G. Lerosey, J. de Rosny, A. Tourin, and M. Fink, Science 315, 1120 (2007).
[CrossRef] [PubMed]

Freund, I.

I. Freund, M. Rosenbluh, and S. Feng, Phys. Rev. Lett. 61, 2328 (1988).
[CrossRef] [PubMed]

Fried, D. L.

Gigan, S.

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. Boccara, and S. Gigan, Phys. Rev. Lett. 104, 100601 (2010).
[CrossRef] [PubMed]

Helmchen, F.

F. Helmchen and W. Denk, Nat. Methods 2, 932 (2005).
[CrossRef] [PubMed]

Kane, C.

S. Feng, C. Kane, P. A. Lee, and A. D. Stone, Phys. Rev. Lett. 61, 834 (1988).
[CrossRef] [PubMed]

Lagendijk, A.

I. M. Vellekoop, E. G. van Putten, A. Lagendijk, and A. P. Mosk, Opt. Express 16, 67 (2008).
[CrossRef] [PubMed]

I. M. Vellekoop, A. Lagendijk, and A. P. Mosk, Nat. Photonics, doi:10.1038/nphoton.2010.3.

Lee, P. A.

S. Feng, C. Kane, P. A. Lee, and A. D. Stone, Phys. Rev. Lett. 61, 834 (1988).
[CrossRef] [PubMed]

Lerosey, G.

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. Boccara, and S. Gigan, Phys. Rev. Lett. 104, 100601 (2010).
[CrossRef] [PubMed]

G. Lerosey, J. de Rosny, A. Tourin, and M. Fink, Science 315, 1120 (2007).
[CrossRef] [PubMed]

Mosk, A. P.

Ntziachristos, V.

C. Vinegoni, C. Pitsouli, D. Razansky, N. Perrimon, and V. Ntziachristos, Nat. Methods 5, 45 (2008).
[CrossRef]

V. Ntziachristos, Annu. Rev. Biomed. Eng. 8, 1 (2006).
[CrossRef] [PubMed]

Perrimon, N.

C. Vinegoni, C. Pitsouli, D. Razansky, N. Perrimon, and V. Ntziachristos, Nat. Methods 5, 45 (2008).
[CrossRef]

Pitsouli, C.

C. Vinegoni, C. Pitsouli, D. Razansky, N. Perrimon, and V. Ntziachristos, Nat. Methods 5, 45 (2008).
[CrossRef]

Popoff, S. M.

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. Boccara, and S. Gigan, Phys. Rev. Lett. 104, 100601 (2010).
[CrossRef] [PubMed]

Psaltis, D.

Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, Nat. Photonics 2, 110 (2008).
[CrossRef] [PubMed]

Razansky, D.

C. Vinegoni, C. Pitsouli, D. Razansky, N. Perrimon, and V. Ntziachristos, Nat. Methods 5, 45 (2008).
[CrossRef]

Rosen, M. A.

Rosenbluh, M.

I. Freund, M. Rosenbluh, and S. Feng, Phys. Rev. Lett. 61, 2328 (1988).
[CrossRef] [PubMed]

Schnall, M. D.

Schweiger, M.

Stephens, D. J.

D. J. Stephens and V. J. Allan, Science 300, 82 (2007).
[CrossRef]

Stone, A. D.

S. Feng, C. Kane, P. A. Lee, and A. D. Stone, Phys. Rev. Lett. 61, 834 (1988).
[CrossRef] [PubMed]

Tourin, A.

G. Lerosey, J. de Rosny, A. Tourin, and M. Fink, Science 315, 1120 (2007).
[CrossRef] [PubMed]

Tyson, R. K.

R. K. Tyson, Principles of Adaptive Optics (Academic, 1998).

van Putten, E. G.

Vellekoop, I. M.

Vinegoni, C.

C. Vinegoni, C. Pitsouli, D. Razansky, N. Perrimon, and V. Ntziachristos, Nat. Methods 5, 45 (2008).
[CrossRef]

Yang, C.

Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, Nat. Photonics 2, 110 (2008).
[CrossRef] [PubMed]

Yaqoob, Z.

Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, Nat. Photonics 2, 110 (2008).
[CrossRef] [PubMed]

Yodh, A. G.

Annu. Rev. Biomed. Eng. (1)

V. Ntziachristos, Annu. Rev. Biomed. Eng. 8, 1 (2006).
[CrossRef] [PubMed]

J. Opt. Soc. Am. (1)

Nat. Methods (2)

F. Helmchen and W. Denk, Nat. Methods 2, 932 (2005).
[CrossRef] [PubMed]

C. Vinegoni, C. Pitsouli, D. Razansky, N. Perrimon, and V. Ntziachristos, Nat. Methods 5, 45 (2008).
[CrossRef]

Nat. Photonics (1)

Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, Nat. Photonics 2, 110 (2008).
[CrossRef] [PubMed]

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. Lett. (3)

S. Feng, C. Kane, P. A. Lee, and A. D. Stone, Phys. Rev. Lett. 61, 834 (1988).
[CrossRef] [PubMed]

I. Freund, M. Rosenbluh, and S. Feng, Phys. Rev. Lett. 61, 2328 (1988).
[CrossRef] [PubMed]

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. Boccara, and S. Gigan, Phys. Rev. Lett. 104, 100601 (2010).
[CrossRef] [PubMed]

Science (2)

G. Lerosey, J. de Rosny, A. Tourin, and M. Fink, Science 315, 1120 (2007).
[CrossRef] [PubMed]

D. J. Stephens and V. J. Allan, Science 300, 82 (2007).
[CrossRef]

Other (3)

A.Diaspro, ed., Confocal and Two-Photon Microscopy: Foundations, Applications and Advances (Wiley-Liss, 2002).

I. M. Vellekoop, A. Lagendijk, and A. P. Mosk, Nat. Photonics, doi:10.1038/nphoton.2010.3.

R. K. Tyson, Principles of Adaptive Optics (Academic, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Principle of SLFM. (a) A turbid layer blocks a fluorescent structure from sight; all incident light is scattered. (b) By use of interferometric focusing (e.g., phase conjugation or wavefront shaping), scattered light is made to focus through the layer. (c) Imaging: the focus follows rotations of the incident beam. The hidden structure is imaged by scanning the focus. (d) Experimental setup. A laser beam is raster scanned, and its wavefront is shaped with a spatial light modulator (SLM). Dotted lines are conjugate planes. For ease of view, the SLM is drawn as a transmissive device, and folding mirrors are omitted.

Fig. 2
Fig. 2

Dense cluster of 200 nm diameter fluorescent beads. (a) Seen directly (from the back of the sample) with a wide-field fluorescence microscope, no scattering layer between the structure and the microscope. (b) Seen through the 5.1 - μ m -thick scattering layer with a wide-field fluorescence microscope. The structure lies 1 mm below the layer. Only a diffuse spot, much larger than the fluorescent structure, is visible. Square box, area scanned with the SLF microscope. (c) Seen through the scattering layer with the SLF microscope. The structure is clearly visible at a high resolution. The image was mirrored for ease of comparison with (a).

Fig. 3
Fig. 3

Resolution of the SLF microscope. (a) SLFM image of three 200 nm diameter fluorescent beads, seen through a 12.1 μ m layer of zinc oxide pigment. Scale bar is 1 μ m . (b) Intensity profile of the lower right spot, indicating the resolution.

Metrics