Abstract

We demonstrate a low-cost, high-sensitivity, all-fiber microcantilever sensor, a fiber-to-tip microcantilever sensor (FTMS). In this sensor, a nanosize fiber tip serves as both microcantilever and miniaturized light probe. Subnanometer displacements of the fiber-tip cantilever are expected to be registered by measuring the light intensity that it receives from a collinearly aligned single-mode fiber (SMF). We found that the cantilever-displacement curve is defined by the Gaussian profile of the fundamental mode, HE11, guided in the aligned SMF. An FTMS vibration sensor has been implemented as an example of the technique, exhibiting an estimated resolution of 2 Å. The FTMS should open new ways of inexpensive fiber-optic microcantilever sensing.

© 2010 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Low-cost high-performance fiber-optic pH sensor based on thin-core fiber modal interferometer

Bobo Gu, Ming-Jie Yin, A. Ping Zhang, Jin-Wen Qian, and Sailing He
Opt. Express 17(25) 22296-22302 (2009)

Low-cost vibration sensor based on dual fiber Bragg gratings and light intensity measurement

Xueqing Gao, Yongjiao Wang, Bo Yuan, Yinquan Yuan, Yawen Dai, and Gang Xu
Appl. Opt. 52(27) 6782-6787 (2013)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription