Abstract

We show for the first time, to our knowledge, high-resolution wide-field images of biological samples recorded using coherent aperture-synthesis Fourier holography. To achieve this, we combined off-axis plane-wave polarized illumination with an axial sample rotation and polarization-sensitive collection of backscattered light. We synthesized 180 Fourier holograms using an efficient postdetection phase-matching correlation scheme. The result was an annular spatial frequency-space synthetic aperture (NA=0.93) with an effective area 25 times larger than that due to a single hologram. A high-resolution high-contrast microscopic reconstruction of biological tissue was computed over a sample area of 9mm2 from holograms acquired at 34 mm working distance.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. A. Alexandrov, T. R. Hillman, T. Gutzler, and D. D. Sampson, Phys. Rev. Lett. 97, 168102 (2006).
    [CrossRef] [PubMed]
  2. T. R. Hillman, T. Gutzler, S. A. Alexandrov, and D. D. Sampson, Opt. Express 17, 7873 (2009).
    [CrossRef] [PubMed]
  3. P. Feng, X. Wen, and R. Lu, Opt. Express 17, 5473 (2009).
    [CrossRef] [PubMed]
  4. L. Granero, V. Mico, Z. Zalevsky, and J. Garcia, Opt. Express 17, 15008 (2009).
    [CrossRef] [PubMed]
  5. J. H. Massig, Opt. Lett. 27, 2179 (2002).
    [CrossRef]
  6. A. A. Adeyemi and T. E. Darcie, Appl. Opt. 48, 3291 (2009).
    [CrossRef] [PubMed]
  7. A. Neumann, Y. Kuznetsova, and S. R. J. Brueck, Opt. Express 16, 20477 (2008).
    [CrossRef] [PubMed]
  8. V. Mico, J. Garcia, and Z. Zalevsky, J. Opt. A 10, 125001 (2008).
    [CrossRef]
  9. C. J. Yuan, H. C. Zhai, and H. T. Liu, Opt. Lett. 33, 2356 (2008).
    [CrossRef] [PubMed]
  10. J. R. Price, P. R. Bingham, and C. E. Thomas, Appl. Opt. 46, 827 (2007).
    [CrossRef] [PubMed]
  11. V. Lauer, J. Microsc. 205, 165 (2002).
    [CrossRef] [PubMed]
  12. Y. Sung, W. Choi, C. Fang-Yen, K. Badizadegan, R. R. Dasari, and M. S. Feld, Opt. Express 17, 266 (2009).
    [CrossRef] [PubMed]
  13. H. F. Ding, Z. Wang, F. Nguyen, S. A. Boppart, and G. Popescu, Phys. Rev. Lett. 101, 238102 (2008).
    [CrossRef] [PubMed]
  14. J. L. Di, J. L. Zhao, H. Z. Jiang, P. Zhang, Q. Fan, and W. W. Sun, Appl. Opt. 47, 5654 (2008).
    [CrossRef] [PubMed]

2009 (5)

2008 (5)

2007 (1)

2006 (1)

S. A. Alexandrov, T. R. Hillman, T. Gutzler, and D. D. Sampson, Phys. Rev. Lett. 97, 168102 (2006).
[CrossRef] [PubMed]

2002 (2)

Adeyemi, A. A.

Alexandrov, S. A.

T. R. Hillman, T. Gutzler, S. A. Alexandrov, and D. D. Sampson, Opt. Express 17, 7873 (2009).
[CrossRef] [PubMed]

S. A. Alexandrov, T. R. Hillman, T. Gutzler, and D. D. Sampson, Phys. Rev. Lett. 97, 168102 (2006).
[CrossRef] [PubMed]

Badizadegan, K.

Bingham, P. R.

Boppart, S. A.

H. F. Ding, Z. Wang, F. Nguyen, S. A. Boppart, and G. Popescu, Phys. Rev. Lett. 101, 238102 (2008).
[CrossRef] [PubMed]

Brueck, S. R. J.

Choi, W.

Darcie, T. E.

Dasari, R. R.

Di, J. L.

Ding, H. F.

H. F. Ding, Z. Wang, F. Nguyen, S. A. Boppart, and G. Popescu, Phys. Rev. Lett. 101, 238102 (2008).
[CrossRef] [PubMed]

Fan, Q.

Fang-Yen, C.

Feld, M. S.

Feng, P.

Garcia, J.

Granero, L.

Gutzler, T.

T. R. Hillman, T. Gutzler, S. A. Alexandrov, and D. D. Sampson, Opt. Express 17, 7873 (2009).
[CrossRef] [PubMed]

S. A. Alexandrov, T. R. Hillman, T. Gutzler, and D. D. Sampson, Phys. Rev. Lett. 97, 168102 (2006).
[CrossRef] [PubMed]

Hillman, T. R.

T. R. Hillman, T. Gutzler, S. A. Alexandrov, and D. D. Sampson, Opt. Express 17, 7873 (2009).
[CrossRef] [PubMed]

S. A. Alexandrov, T. R. Hillman, T. Gutzler, and D. D. Sampson, Phys. Rev. Lett. 97, 168102 (2006).
[CrossRef] [PubMed]

Jiang, H. Z.

Kuznetsova, Y.

Lauer, V.

V. Lauer, J. Microsc. 205, 165 (2002).
[CrossRef] [PubMed]

Liu, H. T.

Lu, R.

Massig, J. H.

Mico, V.

Neumann, A.

Nguyen, F.

H. F. Ding, Z. Wang, F. Nguyen, S. A. Boppart, and G. Popescu, Phys. Rev. Lett. 101, 238102 (2008).
[CrossRef] [PubMed]

Popescu, G.

H. F. Ding, Z. Wang, F. Nguyen, S. A. Boppart, and G. Popescu, Phys. Rev. Lett. 101, 238102 (2008).
[CrossRef] [PubMed]

Price, J. R.

Sampson, D. D.

T. R. Hillman, T. Gutzler, S. A. Alexandrov, and D. D. Sampson, Opt. Express 17, 7873 (2009).
[CrossRef] [PubMed]

S. A. Alexandrov, T. R. Hillman, T. Gutzler, and D. D. Sampson, Phys. Rev. Lett. 97, 168102 (2006).
[CrossRef] [PubMed]

Sun, W. W.

Sung, Y.

Thomas, C. E.

Wang, Z.

H. F. Ding, Z. Wang, F. Nguyen, S. A. Boppart, and G. Popescu, Phys. Rev. Lett. 101, 238102 (2008).
[CrossRef] [PubMed]

Wen, X.

Yuan, C. J.

Zalevsky, Z.

Zhai, H. C.

Zhang, P.

Zhao, J. L.

Supplementary Material (1)

» Media 1: MOV (3991 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

System schematic. Some elements are not shown: BE, beam expander; P, polarizer.

Fig. 2
Fig. 2

Final video frame (Media 1) showing the (a) squared modulus of the reconstruction, and (c) magnification of the boxed region, of the lymph node tissue section due to a changing synthetic aperture (b). (d) shows the calculated full-aperture PSF (identical in x and y) in black (solid curve) and single-reconstruction PSFs in red (x, light dashed curve) and blue (y, dark dashed curve); scale bars: (a) 150 and (c) 20 μ m .

Fig. 3
Fig. 3

Reconstructions (squared modulus) of lymph node tissue section: (a) 9 mm 2 coherent synthetic aperture; (b)–(d) single, phase-unmatched, and phase-matched coherent synthetic aperture magnified reconstruction of the region shown in (a); (e)–(g) magnified versions of area highlighted in (d); scale bars: (a) 500, (d) 100, and (g) 30 μ m .

Metrics