Abstract

An optical fiber sensor based on the change of optical confinement in a subwavelength tip is presented. The optical spot is substantially increased when the environmental refractive index (RI) increases from 1.3 to 1.4. By measuring the intensity of low angular spectral components, an intensity sensitivity up to 8000% per RI unit is achieved. The fiber tip sensors take advantage of the small detection volume and real-time responses. We demonstrate the application of the nanofiber sensors for measuring concentrations of acids and evaporation rates of aqueous mixtures.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. F. Stanley, Refractometers: Basic Principles (Bellingham & Stanley, 1989).
  2. J. I. Peterson and G. G. Vurek, Science 224, 123 (1984).
    [CrossRef] [PubMed]
  3. O. S. Wolfbeis, Anal. Chem. 80, 4269 (2008).
    [CrossRef] [PubMed]
  4. J. Homola, S. S. Yee, and G. Gauglitz, Sens. Actuators B 54, 3 (1999).
    [CrossRef]
  5. J. Villatoro, D. Monzón-Hernández, and E. Mejía, Appl. Opt. 42, 2278 (2003).
    [CrossRef] [PubMed]
  6. Y. J. Chang, Y. C. Chen, H. L. Kuo, and P. K. Wei, J. Biomed. Opt. 11, 014032 (2006).
    [CrossRef] [PubMed]
  7. W. Liang, Y. Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, Appl. Phys. Lett. 86, 151122 (2005).
    [CrossRef]
  8. O. Frazão, P. Caldas, J. L. Santos, P. V. S. Marques, C. Turck, D. J. Lougnot, and O. Soppera, Opt. Lett. 34, 2474 (2009).
    [CrossRef] [PubMed]
  9. Z. L. Ran, Y. J. Rao, W. J. Liu, X. Liao, and K. S. Chiang, Opt. Express 16, 2252 (2008).
    [CrossRef] [PubMed]
  10. S. Lacroix, R. J. Black, C. Veilleux, and J. Lapierre, Appl. Opt. 25, 2468 (1986).
    [CrossRef] [PubMed]
  11. M. Kežmah and D. Ðonlagić, Appl. Opt. 46, 4081 (2007).
    [CrossRef] [PubMed]
  12. P. K. Wei, Y. C. Chen, and H. L. Kuo, J. Microsc. 210, 334 (2003).
    [CrossRef] [PubMed]

2009 (1)

2008 (2)

2007 (1)

2006 (1)

Y. J. Chang, Y. C. Chen, H. L. Kuo, and P. K. Wei, J. Biomed. Opt. 11, 014032 (2006).
[CrossRef] [PubMed]

2005 (1)

W. Liang, Y. Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, Appl. Phys. Lett. 86, 151122 (2005).
[CrossRef]

2003 (2)

1999 (1)

J. Homola, S. S. Yee, and G. Gauglitz, Sens. Actuators B 54, 3 (1999).
[CrossRef]

1989 (1)

G. F. Stanley, Refractometers: Basic Principles (Bellingham & Stanley, 1989).

1986 (1)

1984 (1)

J. I. Peterson and G. G. Vurek, Science 224, 123 (1984).
[CrossRef] [PubMed]

Black, R. J.

Caldas, P.

Chang, Y. J.

Y. J. Chang, Y. C. Chen, H. L. Kuo, and P. K. Wei, J. Biomed. Opt. 11, 014032 (2006).
[CrossRef] [PubMed]

Chen, Y. C.

Y. J. Chang, Y. C. Chen, H. L. Kuo, and P. K. Wei, J. Biomed. Opt. 11, 014032 (2006).
[CrossRef] [PubMed]

P. K. Wei, Y. C. Chen, and H. L. Kuo, J. Microsc. 210, 334 (2003).
[CrossRef] [PubMed]

Chiang, K. S.

Ðonlagic, D.

Frazão, O.

Gauglitz, G.

J. Homola, S. S. Yee, and G. Gauglitz, Sens. Actuators B 54, 3 (1999).
[CrossRef]

Homola, J.

J. Homola, S. S. Yee, and G. Gauglitz, Sens. Actuators B 54, 3 (1999).
[CrossRef]

Huang, Y. Y.

W. Liang, Y. Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, Appl. Phys. Lett. 86, 151122 (2005).
[CrossRef]

Kežmah, M.

Kuo, H. L.

Y. J. Chang, Y. C. Chen, H. L. Kuo, and P. K. Wei, J. Biomed. Opt. 11, 014032 (2006).
[CrossRef] [PubMed]

P. K. Wei, Y. C. Chen, and H. L. Kuo, J. Microsc. 210, 334 (2003).
[CrossRef] [PubMed]

Lacroix, S.

Lapierre, J.

Lee, R. K.

W. Liang, Y. Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, Appl. Phys. Lett. 86, 151122 (2005).
[CrossRef]

Liang, W.

W. Liang, Y. Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, Appl. Phys. Lett. 86, 151122 (2005).
[CrossRef]

Liao, X.

Liu, W. J.

Lougnot, D. J.

Marques, P. V. S.

Mejía, E.

Monzón-Hernández, D.

Peterson, J. I.

J. I. Peterson and G. G. Vurek, Science 224, 123 (1984).
[CrossRef] [PubMed]

Ran, Z. L.

Rao, Y. J.

Santos, J. L.

Soppera, O.

Stanley, G. F.

G. F. Stanley, Refractometers: Basic Principles (Bellingham & Stanley, 1989).

Turck, C.

Veilleux, C.

Villatoro, J.

Vurek, G. G.

J. I. Peterson and G. G. Vurek, Science 224, 123 (1984).
[CrossRef] [PubMed]

Wei, P. K.

Y. J. Chang, Y. C. Chen, H. L. Kuo, and P. K. Wei, J. Biomed. Opt. 11, 014032 (2006).
[CrossRef] [PubMed]

P. K. Wei, Y. C. Chen, and H. L. Kuo, J. Microsc. 210, 334 (2003).
[CrossRef] [PubMed]

Wolfbeis, O. S.

O. S. Wolfbeis, Anal. Chem. 80, 4269 (2008).
[CrossRef] [PubMed]

Xu, Y.

W. Liang, Y. Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, Appl. Phys. Lett. 86, 151122 (2005).
[CrossRef]

Yariv, A.

W. Liang, Y. Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, Appl. Phys. Lett. 86, 151122 (2005).
[CrossRef]

Yee, S. S.

J. Homola, S. S. Yee, and G. Gauglitz, Sens. Actuators B 54, 3 (1999).
[CrossRef]

Anal. Chem. (1)

O. S. Wolfbeis, Anal. Chem. 80, 4269 (2008).
[CrossRef] [PubMed]

Appl. Opt. (3)

Appl. Phys. Lett. (1)

W. Liang, Y. Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, Appl. Phys. Lett. 86, 151122 (2005).
[CrossRef]

J. Biomed. Opt. (1)

Y. J. Chang, Y. C. Chen, H. L. Kuo, and P. K. Wei, J. Biomed. Opt. 11, 014032 (2006).
[CrossRef] [PubMed]

J. Microsc. (1)

P. K. Wei, Y. C. Chen, and H. L. Kuo, J. Microsc. 210, 334 (2003).
[CrossRef] [PubMed]

Opt. Express (1)

Opt. Lett. (1)

Science (1)

J. I. Peterson and G. G. Vurek, Science 224, 123 (1984).
[CrossRef] [PubMed]

Sens. Actuators B (1)

J. Homola, S. S. Yee, and G. Gauglitz, Sens. Actuators B 54, 3 (1999).
[CrossRef]

Other (1)

G. F. Stanley, Refractometers: Basic Principles (Bellingham & Stanley, 1989).

Supplementary Material (1)

» Media 1: MOV (1189 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) SEM image of a tapered fiber tip made by using a modified etching method. (b) Measured intensities in different refractive index media. The optical measurement setup is shown in the inset.

Fig. 2
Fig. 2

(a) Calculated optical fields at the tip region when the environmental RI varied from 1.33 to 1.43. (b) Cross-sectional plots of the optical fields for different RIs. (c) Angular intensity distribution of (b). (d) Transmission intensity collected with different NA values. The solid curves are the FDTD calculation results. The curves with symbols are the experimental results. (See Media 1.)

Fig. 3
Fig. 3

Left, transmission intensity for different tapered tips in different environmental RI. Right, SEM images of tips made from different optical fibers: tip 1, 3M, FS-SC-6324; tip 2, Go4fiber, G-SMF; and tip 3, Prime, Singlemode Omnilit Fiber.

Fig. 4
Fig. 4

(a) Intensity changes as a function of time for different methanol/water mixtures. The concentrations were 10%, 20%, and 40% (v/v). The solid curves are the fitting curves. The inset shows A and τ as functions of concentration. (b) Transmission intensity for different pH values of acetic acid.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

S I = Δ I / I 0 Δ n × 100 ( % RIU ) ,

Metrics