Abstract

We present a digital holographic phase-unwrapping method based on comparison of phase images obtained by using various reconstruction distances. By utilizing information from multiple reconstruction planes, this method can effectively bypass the areas of phase noise. We demonstrate that this method performs better than the traditional phase-unwrapping approaches, even in the case of a complex topology where the data contains high levels of noise.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. C. Ghiglia and M. D. Pritt, Two-Dimensional Phase Unwrapping: Theory, Algorithms, and Software (Wiley, 1998).
  2. H. A. Zebker and R. M. Goldstein, J. Geophys. Res. 91, 4993 (1986).
    [CrossRef]
  3. R. Cusack and N. Papadakis, Neuroimage 16, 754 (2002).
    [CrossRef] [PubMed]
  4. A. Khmaladze, A. Restrepo-Martínez, M. K. Kim, R. Castañeda, and A. Blandón, Appl. Opt. 47, 3203 (2008).
    [CrossRef] [PubMed]
  5. A. Khmaladze, M. K. Kim, and C.-M. Lo, Opt. Express 16, 10900 (2008).
    [CrossRef] [PubMed]
  6. J. Gass, A. Dakoff, and M. K. Kim, Opt. Lett. 28, 1141 (2003).
    [CrossRef] [PubMed]
  7. E. Darakis and J. Soraghan, Appl. Opt. 46, 351 (2007).
    [CrossRef] [PubMed]

2008 (2)

2007 (1)

2003 (1)

2002 (1)

R. Cusack and N. Papadakis, Neuroimage 16, 754 (2002).
[CrossRef] [PubMed]

1998 (1)

D. C. Ghiglia and M. D. Pritt, Two-Dimensional Phase Unwrapping: Theory, Algorithms, and Software (Wiley, 1998).

1986 (1)

H. A. Zebker and R. M. Goldstein, J. Geophys. Res. 91, 4993 (1986).
[CrossRef]

Blandón, A.

Castañeda, R.

Cusack, R.

R. Cusack and N. Papadakis, Neuroimage 16, 754 (2002).
[CrossRef] [PubMed]

Dakoff, A.

Darakis, E.

Gass, J.

Ghiglia, D. C.

D. C. Ghiglia and M. D. Pritt, Two-Dimensional Phase Unwrapping: Theory, Algorithms, and Software (Wiley, 1998).

Goldstein, R. M.

H. A. Zebker and R. M. Goldstein, J. Geophys. Res. 91, 4993 (1986).
[CrossRef]

Khmaladze, A.

Kim, M. K.

Lo, C.-M.

Papadakis, N.

R. Cusack and N. Papadakis, Neuroimage 16, 754 (2002).
[CrossRef] [PubMed]

Pritt, M. D.

D. C. Ghiglia and M. D. Pritt, Two-Dimensional Phase Unwrapping: Theory, Algorithms, and Software (Wiley, 1998).

Restrepo-Martínez, A.

Soraghan, J.

Zebker, H. A.

H. A. Zebker and R. M. Goldstein, J. Geophys. Res. 91, 4993 (1986).
[CrossRef]

Appl. Opt. (2)

J. Geophys. Res. (1)

H. A. Zebker and R. M. Goldstein, J. Geophys. Res. 91, 4993 (1986).
[CrossRef]

Neuroimage (1)

R. Cusack and N. Papadakis, Neuroimage 16, 754 (2002).
[CrossRef] [PubMed]

Opt. Express (1)

Opt. Lett. (1)

Other (1)

D. C. Ghiglia and M. D. Pritt, Two-Dimensional Phase Unwrapping: Theory, Algorithms, and Software (Wiley, 1998).

Supplementary Material (1)

» Media 1: GIF (118 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Phase unwrapping by varying reconstruction distance (see text for details).

Fig. 2
Fig. 2

RAW cells—quality map-guided flood-fill unwrapping: (a) wrapped phase image (the areas of discontinuous phase gradient are highlighted) and (b) unwrapped phase image (where the error has propagated into other regions). The images are 51.2 × 51.2 μ m 2 ( 256 × 256  pixels ) .

Fig. 3
Fig. 3

RAW cells—varying reconstruction distance unwrapping: (a)–(d) various stages of unwrapping and (e) 3D pseudocolor rendering of the unwrapped phase image. The images are 51.2 × 51.2 μ m 2 ( 256 × 256  pixels ) (see Media 1).

Fig. 4
Fig. 4

Onion cells—unwrapping: (a) hologram, (b) amplitude, (c) wrapped phase, (d) quality map-guided flood-fill unwrapped phase with artifacts (shown in circles), (e) 3D rendering of (d), (f) phase unwrapping using varying reconstruction distance, (g) 3D rendering of (f), (h) phase unwrapping using the addition of modulo of 2 π (some artifacts are still seen), (i) 3D rendering of (h). The images are 100 × 100 μ m 2 ( 416 × 416  pixels ) .

Metrics