Abstract

We introduce an optical microresonator consisting of a planar waveguide terminated by metallic mirrors. The resonator was fabricated on a silicon-on-insulator platform, and its optical performance was theoretically and experimentally investigated. The demonstrated device had dimensions of 200μm×40μm and exhibited a quality factor of about 1000 and a free-spectral range of about 8nm. Application to high-throughput, label-free biochemical sensing is considered, and optimization with respect to the surface sensitivity is carried out. The optimized sensitivity makes it possible to detect subnanometer layers of molecules adsorbing to the surface of the resonator.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Vahala, Nature 424, 839 (2003).
    [CrossRef] [PubMed]
  2. V. V. Doan and M. J. Sailor, Science 256, 1791 (1992).
    [CrossRef] [PubMed]
  3. M. Cooper, Nat. Rev. Drug Discovery 1, 515 (2002).
    [CrossRef]
  4. D. T. H. Tan, K. Ikeda, and Y. Fainman, Opt. Lett. 34, 1357 (2009).
    [CrossRef] [PubMed]
  5. H.-C. Kim, K. Ikeda, and Y. Fainman, Opt. Lett. 32, 539 (2007).
    [CrossRef] [PubMed]
  6. K. Tiefenthaler and W. Lukosz, J. Opt. Soc. Am. B 6, 209 (1989).
    [CrossRef]
  7. J. Schmid, W. Sinclair, J. García, S. Janz, J. Lapointe, D. Poitras, Y. Li, T. Mischki, G. Lopinski, P. Cheben, A. Delâge, A. Densmore, P. Waldron, and D. Xu, Opt. Express 17, 18371 (2009).
    [CrossRef] [PubMed]
  8. M. I. Nathan, A. B. Fowler, and G. Burns, Phys. Rev. Lett. 11, 152 (1963).
    [CrossRef]
  9. E.D.Palik, ed., Handbook of Optical Constants of Solids (Academic, 1985).
  10. A. Yariv, Quantum Electronics (Wiley, 1989), p. 147.
  11. S. Glasberg, A. Sharon, D. Rosenblatt, and A. A. Friesem, Opt. Commun. 145, 291 (1998).
    [CrossRef]
  12. S. Fan, W. Suh, and J. Joannopoulos, J. Opt. Soc. Am. A 20, 569 (2003).
    [CrossRef]
  13. G. M. Hwang, L. Pang, E. H. Mullen, and Y. Fainman, IEEE Sens. J. 8, 2074 (2008).
    [CrossRef]
  14. J. A. De Feijter, J. Benjamins, and F. A. Veer, Biopolymers 17, 1759 (1978).
    [CrossRef]

2009 (2)

2008 (1)

G. M. Hwang, L. Pang, E. H. Mullen, and Y. Fainman, IEEE Sens. J. 8, 2074 (2008).
[CrossRef]

2007 (1)

2003 (2)

2002 (1)

M. Cooper, Nat. Rev. Drug Discovery 1, 515 (2002).
[CrossRef]

1998 (1)

S. Glasberg, A. Sharon, D. Rosenblatt, and A. A. Friesem, Opt. Commun. 145, 291 (1998).
[CrossRef]

1992 (1)

V. V. Doan and M. J. Sailor, Science 256, 1791 (1992).
[CrossRef] [PubMed]

1989 (1)

1978 (1)

J. A. De Feijter, J. Benjamins, and F. A. Veer, Biopolymers 17, 1759 (1978).
[CrossRef]

1963 (1)

M. I. Nathan, A. B. Fowler, and G. Burns, Phys. Rev. Lett. 11, 152 (1963).
[CrossRef]

Benjamins, J.

J. A. De Feijter, J. Benjamins, and F. A. Veer, Biopolymers 17, 1759 (1978).
[CrossRef]

Burns, G.

M. I. Nathan, A. B. Fowler, and G. Burns, Phys. Rev. Lett. 11, 152 (1963).
[CrossRef]

Cheben, P.

Cooper, M.

M. Cooper, Nat. Rev. Drug Discovery 1, 515 (2002).
[CrossRef]

De Feijter, J. A.

J. A. De Feijter, J. Benjamins, and F. A. Veer, Biopolymers 17, 1759 (1978).
[CrossRef]

Delâge, A.

Densmore, A.

Doan, V. V.

V. V. Doan and M. J. Sailor, Science 256, 1791 (1992).
[CrossRef] [PubMed]

Fainman, Y.

Fan, S.

Fowler, A. B.

M. I. Nathan, A. B. Fowler, and G. Burns, Phys. Rev. Lett. 11, 152 (1963).
[CrossRef]

Friesem, A. A.

S. Glasberg, A. Sharon, D. Rosenblatt, and A. A. Friesem, Opt. Commun. 145, 291 (1998).
[CrossRef]

García, J.

Glasberg, S.

S. Glasberg, A. Sharon, D. Rosenblatt, and A. A. Friesem, Opt. Commun. 145, 291 (1998).
[CrossRef]

Hwang, G. M.

G. M. Hwang, L. Pang, E. H. Mullen, and Y. Fainman, IEEE Sens. J. 8, 2074 (2008).
[CrossRef]

Ikeda, K.

Janz, S.

Joannopoulos, J.

Kim, H.-C.

Lapointe, J.

Li, Y.

Lopinski, G.

Lukosz, W.

Mischki, T.

Mullen, E. H.

G. M. Hwang, L. Pang, E. H. Mullen, and Y. Fainman, IEEE Sens. J. 8, 2074 (2008).
[CrossRef]

Nathan, M. I.

M. I. Nathan, A. B. Fowler, and G. Burns, Phys. Rev. Lett. 11, 152 (1963).
[CrossRef]

Pang, L.

G. M. Hwang, L. Pang, E. H. Mullen, and Y. Fainman, IEEE Sens. J. 8, 2074 (2008).
[CrossRef]

Poitras, D.

Rosenblatt, D.

S. Glasberg, A. Sharon, D. Rosenblatt, and A. A. Friesem, Opt. Commun. 145, 291 (1998).
[CrossRef]

Sailor, M. J.

V. V. Doan and M. J. Sailor, Science 256, 1791 (1992).
[CrossRef] [PubMed]

Schmid, J.

Sharon, A.

S. Glasberg, A. Sharon, D. Rosenblatt, and A. A. Friesem, Opt. Commun. 145, 291 (1998).
[CrossRef]

Sinclair, W.

Suh, W.

Tan, D. T. H.

Tiefenthaler, K.

Vahala, K.

K. Vahala, Nature 424, 839 (2003).
[CrossRef] [PubMed]

Veer, F. A.

J. A. De Feijter, J. Benjamins, and F. A. Veer, Biopolymers 17, 1759 (1978).
[CrossRef]

Waldron, P.

Xu, D.

Yariv, A.

A. Yariv, Quantum Electronics (Wiley, 1989), p. 147.

Biopolymers (1)

J. A. De Feijter, J. Benjamins, and F. A. Veer, Biopolymers 17, 1759 (1978).
[CrossRef]

IEEE Sens. J. (1)

G. M. Hwang, L. Pang, E. H. Mullen, and Y. Fainman, IEEE Sens. J. 8, 2074 (2008).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

Nat. Rev. Drug Discovery (1)

M. Cooper, Nat. Rev. Drug Discovery 1, 515 (2002).
[CrossRef]

Nature (1)

K. Vahala, Nature 424, 839 (2003).
[CrossRef] [PubMed]

Opt. Commun. (1)

S. Glasberg, A. Sharon, D. Rosenblatt, and A. A. Friesem, Opt. Commun. 145, 291 (1998).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Phys. Rev. Lett. (1)

M. I. Nathan, A. B. Fowler, and G. Burns, Phys. Rev. Lett. 11, 152 (1963).
[CrossRef]

Science (1)

V. V. Doan and M. J. Sailor, Science 256, 1791 (1992).
[CrossRef] [PubMed]

Other (2)

E.D.Palik, ed., Handbook of Optical Constants of Solids (Academic, 1985).

A. Yariv, Quantum Electronics (Wiley, 1989), p. 147.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Resonator geometry: (a) Si slab waveguide with partial Al mirrors, (b) two-dimensional model.

Fig. 2
Fig. 2

Resonator design considerations: (a) illustration of the two equations for the resonator modes, (b) group index as a function of waveguide thickness, (c) reflectivity of the partial Al mirror as a function of the waveguide thickness, and (d) Surface sensitivity for the proposed resonator. The red dots in (b)–(d) designate the fabricated resonator, and the inset in (c) shows finite-element method (FEM) simulation of | H y | for TM 0 mode in this case.

Fig. 3
Fig. 3

Fabricated device. (a) Scanning-electron-microscope (SEM) micrograph of the resonator, showing the mirrors and the grating on top of a Si waveguide. The mirrors were coated with HSQ resist to prevent their oxidation. (b) High-magnification SEM micrograph showing the grating profile. (c) Micrograph of the entire resonator obtained with an optical microscope.

Fig. 4
Fig. 4

Experimental results: measured reflection spectrum (red dots) and the fitted model (solid black). Inset (a) shows comparison of the experimental results (solid black) with the simulated 2D model (dashed blue) reflection spectrum. Inset (b) shows a measured reflection spectrum of a large grating with no mirrors.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

β = k 0 n eff ( λ ) ,
β L = m π ,
Δ λ λ 2 2 L ( n g λ 2 L ) 1 ,
Q m = 2 π λ L n g ln ( R 1 ) ,
S λ λ h = λ n eff h n g 1 .

Metrics