Abstract

Ultra-high-quality (UHQ) factor optical cavities have numerous applications throughout engineering and science. Incorporating active elements into these UHQ cavities to create dynamic devices would extend their applicability; however, it is inherently difficult to develop an active UHQ device. Ultra-thin films formed from optically active polymers provide one route to overcome this limitation. In the present work, hybrid devices composed of UHQ planar optical cavities with ultra-thin films are fabricated on a silicon wafer. Using finite element method simulations, the optical field overlap between the cavity and the polymer film is modeled and experimentally verified using two polymers: poly(methyl methacrylate) and polystyrene. These hybrid devices have demonstrated material-limited Q factors above 107.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Tulek, D. Akbulut, and M. Bayindir, Appl. Phys. Lett. 94, 203302 (2009).
    [CrossRef]
  2. M. R. Lee and P. M. Fauchet, Opt. Lett. 32, 3284 (2007).
    [CrossRef] [PubMed]
  3. H. J. Kimble, Nature 453, 1023 (2008).
    [CrossRef] [PubMed]
  4. Q. Li, M. Soltani, S. Yegnanarayanan, and A. Adibi, Opt. Express 17, 2247 (2009).
    [CrossRef] [PubMed]
  5. P. Rabiei, W. H. Steier, C. Zhang, and L. R. Dalton, J. Lightwave Technol. 20, 1968 (2002).
    [CrossRef]
  6. G. Gupta, Y. H. Kuo, H. Tazawa, W. H. Steier, A. Stapleton, and J. D. O'Brien, Appl. Opt. 48, 5324 (2009).
    [CrossRef] [PubMed]
  7. M. Han and A. Wang, Opt. Lett. 32, 1800 (2007).
    [CrossRef] [PubMed]
  8. M. L. Gorodetsky, A. A. Savchenkov, and V. S. Ilchenko, Opt. Lett. 21, 453 (1996).
    [CrossRef] [PubMed]
  9. D. A. Pinnow, T. C. Rich, F. W. Ostermay, and M. Didomeni, Appl. Phys. Lett. 22, 527 (1973).
    [CrossRef]
  10. S. N. Kasarova, N. G. Sultanova, C. D. Ivanov, and I. D. Nikolov, Opt. Mater. 29, 1481 (2007).
    [CrossRef]
  11. M. Oxborrow, IEEE Trans. Microwave Theory Tech. 55, 1209 (2007).
    [CrossRef]
  12. D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, Nature 421, 925 (2003).
    [CrossRef] [PubMed]
  13. C. B. Walsh and E. I. Franses, Thin Solid Films 429, 71 (2003).
    [CrossRef]
  14. J. C. Knight, G. Cheung, F. Jacques, and T. A. Birks, Opt. Lett. 22, 1129 (1997).
    [CrossRef] [PubMed]
  15. S. M. Spillane, “Fiber-coupled ultra-high-Q Microresonators for nonlinear and quantum optics,” Ph.D. dissertation (California Institute of Technology, 2004).
  16. C. H. Dong, L. He, Y. F. Xiao, V. R. Gaddam, S. K. Ozdemir, Z. F. Han, G. C. Guo, and L. Yang, Appl. Phys. Lett. 94, 231119 (2009).
    [CrossRef]
  17. C. Y. Chao and L. J. Guo, Appl. Phys. Lett. 83, 1527 (2003).
    [CrossRef]

2009 (4)

C. H. Dong, L. He, Y. F. Xiao, V. R. Gaddam, S. K. Ozdemir, Z. F. Han, G. C. Guo, and L. Yang, Appl. Phys. Lett. 94, 231119 (2009).
[CrossRef]

A. Tulek, D. Akbulut, and M. Bayindir, Appl. Phys. Lett. 94, 203302 (2009).
[CrossRef]

Q. Li, M. Soltani, S. Yegnanarayanan, and A. Adibi, Opt. Express 17, 2247 (2009).
[CrossRef] [PubMed]

G. Gupta, Y. H. Kuo, H. Tazawa, W. H. Steier, A. Stapleton, and J. D. O'Brien, Appl. Opt. 48, 5324 (2009).
[CrossRef] [PubMed]

2008 (1)

H. J. Kimble, Nature 453, 1023 (2008).
[CrossRef] [PubMed]

2007 (4)

M. Han and A. Wang, Opt. Lett. 32, 1800 (2007).
[CrossRef] [PubMed]

M. R. Lee and P. M. Fauchet, Opt. Lett. 32, 3284 (2007).
[CrossRef] [PubMed]

S. N. Kasarova, N. G. Sultanova, C. D. Ivanov, and I. D. Nikolov, Opt. Mater. 29, 1481 (2007).
[CrossRef]

M. Oxborrow, IEEE Trans. Microwave Theory Tech. 55, 1209 (2007).
[CrossRef]

2003 (3)

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, Nature 421, 925 (2003).
[CrossRef] [PubMed]

C. B. Walsh and E. I. Franses, Thin Solid Films 429, 71 (2003).
[CrossRef]

C. Y. Chao and L. J. Guo, Appl. Phys. Lett. 83, 1527 (2003).
[CrossRef]

2002 (1)

1997 (1)

1996 (1)

1973 (1)

D. A. Pinnow, T. C. Rich, F. W. Ostermay, and M. Didomeni, Appl. Phys. Lett. 22, 527 (1973).
[CrossRef]

Adibi, A.

Akbulut, D.

A. Tulek, D. Akbulut, and M. Bayindir, Appl. Phys. Lett. 94, 203302 (2009).
[CrossRef]

Armani, D. K.

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, Nature 421, 925 (2003).
[CrossRef] [PubMed]

Bayindir, M.

A. Tulek, D. Akbulut, and M. Bayindir, Appl. Phys. Lett. 94, 203302 (2009).
[CrossRef]

Birks, T. A.

Chao, C. Y.

C. Y. Chao and L. J. Guo, Appl. Phys. Lett. 83, 1527 (2003).
[CrossRef]

Cheung, G.

Dalton, L. R.

Didomeni, M.

D. A. Pinnow, T. C. Rich, F. W. Ostermay, and M. Didomeni, Appl. Phys. Lett. 22, 527 (1973).
[CrossRef]

Dong, C. H.

C. H. Dong, L. He, Y. F. Xiao, V. R. Gaddam, S. K. Ozdemir, Z. F. Han, G. C. Guo, and L. Yang, Appl. Phys. Lett. 94, 231119 (2009).
[CrossRef]

Fauchet, P. M.

Franses, E. I.

C. B. Walsh and E. I. Franses, Thin Solid Films 429, 71 (2003).
[CrossRef]

Gaddam, V. R.

C. H. Dong, L. He, Y. F. Xiao, V. R. Gaddam, S. K. Ozdemir, Z. F. Han, G. C. Guo, and L. Yang, Appl. Phys. Lett. 94, 231119 (2009).
[CrossRef]

Gorodetsky, M. L.

Guo, G. C.

C. H. Dong, L. He, Y. F. Xiao, V. R. Gaddam, S. K. Ozdemir, Z. F. Han, G. C. Guo, and L. Yang, Appl. Phys. Lett. 94, 231119 (2009).
[CrossRef]

Guo, L. J.

C. Y. Chao and L. J. Guo, Appl. Phys. Lett. 83, 1527 (2003).
[CrossRef]

Gupta, G.

Han, M.

Han, Z. F.

C. H. Dong, L. He, Y. F. Xiao, V. R. Gaddam, S. K. Ozdemir, Z. F. Han, G. C. Guo, and L. Yang, Appl. Phys. Lett. 94, 231119 (2009).
[CrossRef]

He, L.

C. H. Dong, L. He, Y. F. Xiao, V. R. Gaddam, S. K. Ozdemir, Z. F. Han, G. C. Guo, and L. Yang, Appl. Phys. Lett. 94, 231119 (2009).
[CrossRef]

Ilchenko, V. S.

Ivanov, C. D.

S. N. Kasarova, N. G. Sultanova, C. D. Ivanov, and I. D. Nikolov, Opt. Mater. 29, 1481 (2007).
[CrossRef]

Jacques, F.

Kasarova, S. N.

S. N. Kasarova, N. G. Sultanova, C. D. Ivanov, and I. D. Nikolov, Opt. Mater. 29, 1481 (2007).
[CrossRef]

Kimble, H. J.

H. J. Kimble, Nature 453, 1023 (2008).
[CrossRef] [PubMed]

Kippenberg, T. J.

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, Nature 421, 925 (2003).
[CrossRef] [PubMed]

Knight, J. C.

Kuo, Y. H.

Lee, M. R.

Li, Q.

Nikolov, I. D.

S. N. Kasarova, N. G. Sultanova, C. D. Ivanov, and I. D. Nikolov, Opt. Mater. 29, 1481 (2007).
[CrossRef]

O'Brien, J. D.

Ostermay, F. W.

D. A. Pinnow, T. C. Rich, F. W. Ostermay, and M. Didomeni, Appl. Phys. Lett. 22, 527 (1973).
[CrossRef]

Oxborrow, M.

M. Oxborrow, IEEE Trans. Microwave Theory Tech. 55, 1209 (2007).
[CrossRef]

Ozdemir, S. K.

C. H. Dong, L. He, Y. F. Xiao, V. R. Gaddam, S. K. Ozdemir, Z. F. Han, G. C. Guo, and L. Yang, Appl. Phys. Lett. 94, 231119 (2009).
[CrossRef]

Pinnow, D. A.

D. A. Pinnow, T. C. Rich, F. W. Ostermay, and M. Didomeni, Appl. Phys. Lett. 22, 527 (1973).
[CrossRef]

Rabiei, P.

Rich, T. C.

D. A. Pinnow, T. C. Rich, F. W. Ostermay, and M. Didomeni, Appl. Phys. Lett. 22, 527 (1973).
[CrossRef]

Savchenkov, A. A.

Soltani, M.

Spillane, S. M.

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, Nature 421, 925 (2003).
[CrossRef] [PubMed]

S. M. Spillane, “Fiber-coupled ultra-high-Q Microresonators for nonlinear and quantum optics,” Ph.D. dissertation (California Institute of Technology, 2004).

Stapleton, A.

Steier, W. H.

Sultanova, N. G.

S. N. Kasarova, N. G. Sultanova, C. D. Ivanov, and I. D. Nikolov, Opt. Mater. 29, 1481 (2007).
[CrossRef]

Tazawa, H.

Tulek, A.

A. Tulek, D. Akbulut, and M. Bayindir, Appl. Phys. Lett. 94, 203302 (2009).
[CrossRef]

Vahala, K. J.

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, Nature 421, 925 (2003).
[CrossRef] [PubMed]

Walsh, C. B.

C. B. Walsh and E. I. Franses, Thin Solid Films 429, 71 (2003).
[CrossRef]

Wang, A.

Xiao, Y. F.

C. H. Dong, L. He, Y. F. Xiao, V. R. Gaddam, S. K. Ozdemir, Z. F. Han, G. C. Guo, and L. Yang, Appl. Phys. Lett. 94, 231119 (2009).
[CrossRef]

Yang, L.

C. H. Dong, L. He, Y. F. Xiao, V. R. Gaddam, S. K. Ozdemir, Z. F. Han, G. C. Guo, and L. Yang, Appl. Phys. Lett. 94, 231119 (2009).
[CrossRef]

Yegnanarayanan, S.

Zhang, C.

Appl. Opt. (1)

Appl. Phys. Lett. (4)

C. H. Dong, L. He, Y. F. Xiao, V. R. Gaddam, S. K. Ozdemir, Z. F. Han, G. C. Guo, and L. Yang, Appl. Phys. Lett. 94, 231119 (2009).
[CrossRef]

C. Y. Chao and L. J. Guo, Appl. Phys. Lett. 83, 1527 (2003).
[CrossRef]

A. Tulek, D. Akbulut, and M. Bayindir, Appl. Phys. Lett. 94, 203302 (2009).
[CrossRef]

D. A. Pinnow, T. C. Rich, F. W. Ostermay, and M. Didomeni, Appl. Phys. Lett. 22, 527 (1973).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (1)

M. Oxborrow, IEEE Trans. Microwave Theory Tech. 55, 1209 (2007).
[CrossRef]

J. Lightwave Technol. (1)

Nature (2)

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, Nature 421, 925 (2003).
[CrossRef] [PubMed]

H. J. Kimble, Nature 453, 1023 (2008).
[CrossRef] [PubMed]

Opt. Express (1)

Opt. Lett. (4)

Opt. Mater. (1)

S. N. Kasarova, N. G. Sultanova, C. D. Ivanov, and I. D. Nikolov, Opt. Mater. 29, 1481 (2007).
[CrossRef]

Thin Solid Films (1)

C. B. Walsh and E. I. Franses, Thin Solid Films 429, 71 (2003).
[CrossRef]

Other (1)

S. M. Spillane, “Fiber-coupled ultra-high-Q Microresonators for nonlinear and quantum optics,” Ph.D. dissertation (California Institute of Technology, 2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Scanning electron micrograph of a toroidal microresonator. FEM simulation results for the optical field intensity distribution: (b) silica microtoroid, (c) hybrid microtoroid with a 100 nm thick PS film, and (d) 200 nm thick PS film. Note that the optical field shifts from the silica toward the polymer film as the thickness of the polymer film increases. The major (minor) diameter is 40 ( 8 ) μ m and λ = 850   nm .

Fig. 2
Fig. 2

FEM results. (a) Percentage of the optical field in the polymer layer as a function of the minor diameter as the major diameter increases from 40 to 100 μ m at λ = 980   nm . The PMMA film thickness is fixed at 500 nm. (b) Percentage of the optical field as a function of the polymer film thickness for PMMA and PS at λ = 850 , 980   nm .

Fig. 3
Fig. 3

Experimental and theoretical quality factor ( Q ) as a function of polymer thickness. PMMA at (a) 850 and (b) 980 nm. PS at (c) 850 and (d) at 980 nm. The results were fit to an equation of the form y = a x b , which is included as a solid (dashed) curve for the theoretical (experimental) Q results. The black dotted line indicates the highest Q demonstrated with a silica toroidal resonant cavity to date, setting an upper bound on Q [15].

Tables (1)

Tables Icon

Table 1 Summary of Model and Experimental Fit Parameters

Metrics