Abstract

We report a way to assess the separation between a molecule and a metal surface on account of both Raman scattering and fluorescence intensities measured simultaneously. This approach has no need for an accurate quantity of molecules and bears 1nm resolution. Its distance sensitivity is experimentally demonstrated in the case of dye molecules lying on a gold surface with a polymer spacer layer in between and is compared with theoretical prediction.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, Nature 424, 824 (2003).
    [CrossRef] [PubMed]
  2. Surface-Enhanced Raman Scattering. Physics and Applications, K.Kneip, M.Moskovits, and H.Kneip, eds., Topics in Applied Physics (Springer, 2006), Vol. 103, pp. 1–464.
    [CrossRef]
  3. K. Okamoto, I. Niki, A. Shvartser, Y. Narukava, T. Mukai, and A. Scherer, Nat. Mater. 3, 601 (2004).
    [CrossRef] [PubMed]
  4. M. M. Dvoynenko and J.-K. Wang, Opt. Lett. 32, 3552 (2007).
    [CrossRef] [PubMed]
  5. C. M. Galloway, P. G. Etchegoin, and E. C. Le Ru, Phys. Rev. Lett. 103, 063003 (2009).
    [CrossRef] [PubMed]
  6. T. Akatsuka, H. Tanaka, J. Toyama, T. Nakamura, M. Matsumoto, and Y. Kawabata, Thin Solid Films 210/211, 458 (1992).
    [CrossRef]
  7. P. A. Kawka and R. O. Buckius, Int. J. Thermophys. 22, 517 (2001).
    [CrossRef]
  8. Dye Laser Principles with Applications, F.J.Duarte and L.W.Hillman, eds. (Academic, 1990).
  9. R. R. Chance, A. Prock, and R. Silbey, Adv. Chem. Phys. 37, 1 (1978).
    [CrossRef]

2009

C. M. Galloway, P. G. Etchegoin, and E. C. Le Ru, Phys. Rev. Lett. 103, 063003 (2009).
[CrossRef] [PubMed]

2007

2004

K. Okamoto, I. Niki, A. Shvartser, Y. Narukava, T. Mukai, and A. Scherer, Nat. Mater. 3, 601 (2004).
[CrossRef] [PubMed]

2003

W. L. Barnes, A. Dereux, and T. W. Ebbesen, Nature 424, 824 (2003).
[CrossRef] [PubMed]

2001

P. A. Kawka and R. O. Buckius, Int. J. Thermophys. 22, 517 (2001).
[CrossRef]

1992

T. Akatsuka, H. Tanaka, J. Toyama, T. Nakamura, M. Matsumoto, and Y. Kawabata, Thin Solid Films 210/211, 458 (1992).
[CrossRef]

1978

R. R. Chance, A. Prock, and R. Silbey, Adv. Chem. Phys. 37, 1 (1978).
[CrossRef]

Akatsuka, T.

T. Akatsuka, H. Tanaka, J. Toyama, T. Nakamura, M. Matsumoto, and Y. Kawabata, Thin Solid Films 210/211, 458 (1992).
[CrossRef]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, Nature 424, 824 (2003).
[CrossRef] [PubMed]

Buckius, R. O.

P. A. Kawka and R. O. Buckius, Int. J. Thermophys. 22, 517 (2001).
[CrossRef]

Chance, R. R.

R. R. Chance, A. Prock, and R. Silbey, Adv. Chem. Phys. 37, 1 (1978).
[CrossRef]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, Nature 424, 824 (2003).
[CrossRef] [PubMed]

Dvoynenko, M. M.

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, Nature 424, 824 (2003).
[CrossRef] [PubMed]

Etchegoin, P. G.

C. M. Galloway, P. G. Etchegoin, and E. C. Le Ru, Phys. Rev. Lett. 103, 063003 (2009).
[CrossRef] [PubMed]

Galloway, C. M.

C. M. Galloway, P. G. Etchegoin, and E. C. Le Ru, Phys. Rev. Lett. 103, 063003 (2009).
[CrossRef] [PubMed]

Kawabata, Y.

T. Akatsuka, H. Tanaka, J. Toyama, T. Nakamura, M. Matsumoto, and Y. Kawabata, Thin Solid Films 210/211, 458 (1992).
[CrossRef]

Kawka, P. A.

P. A. Kawka and R. O. Buckius, Int. J. Thermophys. 22, 517 (2001).
[CrossRef]

Le Ru, E. C.

C. M. Galloway, P. G. Etchegoin, and E. C. Le Ru, Phys. Rev. Lett. 103, 063003 (2009).
[CrossRef] [PubMed]

Matsumoto, M.

T. Akatsuka, H. Tanaka, J. Toyama, T. Nakamura, M. Matsumoto, and Y. Kawabata, Thin Solid Films 210/211, 458 (1992).
[CrossRef]

Mukai, T.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukava, T. Mukai, and A. Scherer, Nat. Mater. 3, 601 (2004).
[CrossRef] [PubMed]

Nakamura, T.

T. Akatsuka, H. Tanaka, J. Toyama, T. Nakamura, M. Matsumoto, and Y. Kawabata, Thin Solid Films 210/211, 458 (1992).
[CrossRef]

Narukava, Y.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukava, T. Mukai, and A. Scherer, Nat. Mater. 3, 601 (2004).
[CrossRef] [PubMed]

Niki, I.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukava, T. Mukai, and A. Scherer, Nat. Mater. 3, 601 (2004).
[CrossRef] [PubMed]

Okamoto, K.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukava, T. Mukai, and A. Scherer, Nat. Mater. 3, 601 (2004).
[CrossRef] [PubMed]

Prock, A.

R. R. Chance, A. Prock, and R. Silbey, Adv. Chem. Phys. 37, 1 (1978).
[CrossRef]

Scherer, A.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukava, T. Mukai, and A. Scherer, Nat. Mater. 3, 601 (2004).
[CrossRef] [PubMed]

Shvartser, A.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukava, T. Mukai, and A. Scherer, Nat. Mater. 3, 601 (2004).
[CrossRef] [PubMed]

Silbey, R.

R. R. Chance, A. Prock, and R. Silbey, Adv. Chem. Phys. 37, 1 (1978).
[CrossRef]

Tanaka, H.

T. Akatsuka, H. Tanaka, J. Toyama, T. Nakamura, M. Matsumoto, and Y. Kawabata, Thin Solid Films 210/211, 458 (1992).
[CrossRef]

Toyama, J.

T. Akatsuka, H. Tanaka, J. Toyama, T. Nakamura, M. Matsumoto, and Y. Kawabata, Thin Solid Films 210/211, 458 (1992).
[CrossRef]

Wang, J.-K.

Adv. Chem. Phys.

R. R. Chance, A. Prock, and R. Silbey, Adv. Chem. Phys. 37, 1 (1978).
[CrossRef]

Int. J. Thermophys.

P. A. Kawka and R. O. Buckius, Int. J. Thermophys. 22, 517 (2001).
[CrossRef]

Nat. Mater.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukava, T. Mukai, and A. Scherer, Nat. Mater. 3, 601 (2004).
[CrossRef] [PubMed]

Nature

W. L. Barnes, A. Dereux, and T. W. Ebbesen, Nature 424, 824 (2003).
[CrossRef] [PubMed]

Opt. Lett.

Phys. Rev. Lett.

C. M. Galloway, P. G. Etchegoin, and E. C. Le Ru, Phys. Rev. Lett. 103, 063003 (2009).
[CrossRef] [PubMed]

Thin Solid Films

T. Akatsuka, H. Tanaka, J. Toyama, T. Nakamura, M. Matsumoto, and Y. Kawabata, Thin Solid Films 210/211, 458 (1992).
[CrossRef]

Other

Surface-Enhanced Raman Scattering. Physics and Applications, K.Kneip, M.Moskovits, and H.Kneip, eds., Topics in Applied Physics (Springer, 2006), Vol. 103, pp. 1–464.
[CrossRef]

Dye Laser Principles with Applications, F.J.Duarte and L.W.Hillman, eds. (Academic, 1990).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Integrated intensities of Raman scattering and fluorescence as a function of Raman shift frequency (Ω) of rhodamine 6G molecules deposited on gold-coated substrates without polyimide layer (filled circles), and with two (crosses) and four (open circles) monolayers. For display clarity, filled-circle data points are offset vertically by 0.3 , while cross data points are offset by 0.075 .

Fig. 2
Fig. 2

Integrated intensities of Raman scattering and fluorescence as a function of Raman shift (Ω) of rhodamine 6G molecules deposited on gold-coated substrates without polyimide layer recorded without laser illumination (open circles) and with laser irradiation of 30 s (crosses) and 300 s (filled circles). For display clarify, filled-circle data points are offset vertically by 0.25 , while cross data points are offset by 0.15 .

Fig. 3
Fig. 3

Ratios between Raman intensity and fluorescence intensity ( I R / I fl ) of rhodamine 6G molecules at 1649 cm 1 on gold-coated substrates as a function of the number of polyimide monolayers (N). Filled circles represent experimental data; open squares (open circles) represent theoretical prediction with the imaginary part of polyimide layer being zero (0.02). Solid and dashed curves are guides to eyes for the two predicted results.

Metrics