Abstract

We combined the ultrabroadband supercontinuum of a photonic crystal fiber with a pulse shaper, resulting in a highly flexible light source for multiplex coherent anti-Stokes Raman microscopy. Implemented as the Stokes pulse, it provides tailored selection of the relevant Raman transitions, resulting in a reduced photon load and partial suppression of the nonresonant background. This experiment exploits the advantages of multiplex excitation with the increased acquisition speed of single-channel detection. The molecule-specific Stokes pulses are demonstrated for chemical mapping of a polymer blend.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. A. Akhmanov, N. I. Koroteev, S. A. Magnitskii, V. B. Morozov, A. P. Tarasevich, and V. G. Tunkin, J. Opt. Soc. Am. B 2, 640 (1985).
    [CrossRef]
  2. A. M. Zheltikov, J. Raman Spectrosc. 31, 653 (2000).
    [CrossRef]
  3. T. Lang, M. Motzkus, H. M. Frey, and P. Beaud, J. Chem. Phys. 115, 5418 (2001).
    [CrossRef]
  4. J. X. Cheng and X. S. Xie, J. Phys. Chem. B 108, 827 (2004).
    [CrossRef]
  5. Y. Fu, H. Wang, R. Shi, and J. X. Cheng, Opt. Express 14, 3942 (2006).
    [CrossRef] [PubMed]
  6. C. L. Evans and X. S. Xie, Annu. Rev. Anal. Chem. 1, 883(2008).
    [CrossRef]
  7. N. Dudovich, D. Oron, and Y. Silberberg, Nature 418, 512(2002).
    [CrossRef] [PubMed]
  8. B. von Vacano, W. Wohlleben, and M. Motzkus, Opt. Lett. 31, 413 (2006).
    [CrossRef] [PubMed]
  9. T. W. Kee and M. T. Cicerone, Opt. Lett. 29, 2701 (2004).
    [CrossRef] [PubMed]
  10. H. Kano and H. Hamaguchi, Opt. Express 86, 121113 (2005).
  11. B. von Vacano, L. Meyer, and M. Motzkus, J. Raman Spectrosc. 38, 916 (2007).
    [CrossRef]
  12. S. Postma, A. C. W. van Rhijn, J. P. Korterik, P. Gross, J. L. Herek, and H. L. Offerhaus, Opt. Express 16, 7985 (2008).
    [CrossRef] [PubMed]
  13. S. D. McGrane, R. J. Scharff, M. Greenfield, and D. S. Moore, New J. Physics 11, 105047 (2009).
    [CrossRef]

2009 (1)

S. D. McGrane, R. J. Scharff, M. Greenfield, and D. S. Moore, New J. Physics 11, 105047 (2009).
[CrossRef]

2008 (2)

2007 (1)

B. von Vacano, L. Meyer, and M. Motzkus, J. Raman Spectrosc. 38, 916 (2007).
[CrossRef]

2006 (2)

2005 (1)

H. Kano and H. Hamaguchi, Opt. Express 86, 121113 (2005).

2004 (2)

J. X. Cheng and X. S. Xie, J. Phys. Chem. B 108, 827 (2004).
[CrossRef]

T. W. Kee and M. T. Cicerone, Opt. Lett. 29, 2701 (2004).
[CrossRef] [PubMed]

2002 (1)

N. Dudovich, D. Oron, and Y. Silberberg, Nature 418, 512(2002).
[CrossRef] [PubMed]

2001 (1)

T. Lang, M. Motzkus, H. M. Frey, and P. Beaud, J. Chem. Phys. 115, 5418 (2001).
[CrossRef]

2000 (1)

A. M. Zheltikov, J. Raman Spectrosc. 31, 653 (2000).
[CrossRef]

1985 (1)

Akhmanov, S. A.

Beaud, P.

T. Lang, M. Motzkus, H. M. Frey, and P. Beaud, J. Chem. Phys. 115, 5418 (2001).
[CrossRef]

Cheng, J. X.

Cicerone, M. T.

Dudovich, N.

N. Dudovich, D. Oron, and Y. Silberberg, Nature 418, 512(2002).
[CrossRef] [PubMed]

Evans, C. L.

C. L. Evans and X. S. Xie, Annu. Rev. Anal. Chem. 1, 883(2008).
[CrossRef]

Frey, H. M.

T. Lang, M. Motzkus, H. M. Frey, and P. Beaud, J. Chem. Phys. 115, 5418 (2001).
[CrossRef]

Fu, Y.

Greenfield, M.

S. D. McGrane, R. J. Scharff, M. Greenfield, and D. S. Moore, New J. Physics 11, 105047 (2009).
[CrossRef]

Gross, P.

Hamaguchi, H.

H. Kano and H. Hamaguchi, Opt. Express 86, 121113 (2005).

Herek, J. L.

Kano, H.

H. Kano and H. Hamaguchi, Opt. Express 86, 121113 (2005).

Kee, T. W.

Koroteev, N. I.

Korterik, J. P.

Lang, T.

T. Lang, M. Motzkus, H. M. Frey, and P. Beaud, J. Chem. Phys. 115, 5418 (2001).
[CrossRef]

Magnitskii, S. A.

McGrane, S. D.

S. D. McGrane, R. J. Scharff, M. Greenfield, and D. S. Moore, New J. Physics 11, 105047 (2009).
[CrossRef]

Meyer, L.

B. von Vacano, L. Meyer, and M. Motzkus, J. Raman Spectrosc. 38, 916 (2007).
[CrossRef]

Moore, D. S.

S. D. McGrane, R. J. Scharff, M. Greenfield, and D. S. Moore, New J. Physics 11, 105047 (2009).
[CrossRef]

Morozov, V. B.

Motzkus, M.

B. von Vacano, L. Meyer, and M. Motzkus, J. Raman Spectrosc. 38, 916 (2007).
[CrossRef]

B. von Vacano, W. Wohlleben, and M. Motzkus, Opt. Lett. 31, 413 (2006).
[CrossRef] [PubMed]

T. Lang, M. Motzkus, H. M. Frey, and P. Beaud, J. Chem. Phys. 115, 5418 (2001).
[CrossRef]

Offerhaus, H. L.

Oron, D.

N. Dudovich, D. Oron, and Y. Silberberg, Nature 418, 512(2002).
[CrossRef] [PubMed]

Postma, S.

Scharff, R. J.

S. D. McGrane, R. J. Scharff, M. Greenfield, and D. S. Moore, New J. Physics 11, 105047 (2009).
[CrossRef]

Shi, R.

Silberberg, Y.

N. Dudovich, D. Oron, and Y. Silberberg, Nature 418, 512(2002).
[CrossRef] [PubMed]

Tarasevich, A. P.

Tunkin, V. G.

van Rhijn, A. C. W.

von Vacano, B.

B. von Vacano, L. Meyer, and M. Motzkus, J. Raman Spectrosc. 38, 916 (2007).
[CrossRef]

B. von Vacano, W. Wohlleben, and M. Motzkus, Opt. Lett. 31, 413 (2006).
[CrossRef] [PubMed]

Wang, H.

Wohlleben, W.

Xie, X. S.

C. L. Evans and X. S. Xie, Annu. Rev. Anal. Chem. 1, 883(2008).
[CrossRef]

J. X. Cheng and X. S. Xie, J. Phys. Chem. B 108, 827 (2004).
[CrossRef]

Zheltikov, A. M.

A. M. Zheltikov, J. Raman Spectrosc. 31, 653 (2000).
[CrossRef]

Annu. Rev. Anal. Chem. (1)

C. L. Evans and X. S. Xie, Annu. Rev. Anal. Chem. 1, 883(2008).
[CrossRef]

J. Chem. Phys. (1)

T. Lang, M. Motzkus, H. M. Frey, and P. Beaud, J. Chem. Phys. 115, 5418 (2001).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. B (1)

J. X. Cheng and X. S. Xie, J. Phys. Chem. B 108, 827 (2004).
[CrossRef]

J. Raman Spectrosc. (2)

A. M. Zheltikov, J. Raman Spectrosc. 31, 653 (2000).
[CrossRef]

B. von Vacano, L. Meyer, and M. Motzkus, J. Raman Spectrosc. 38, 916 (2007).
[CrossRef]

Nature (1)

N. Dudovich, D. Oron, and Y. Silberberg, Nature 418, 512(2002).
[CrossRef] [PubMed]

New J. Physics (1)

S. D. McGrane, R. J. Scharff, M. Greenfield, and D. S. Moore, New J. Physics 11, 105047 (2009).
[CrossRef]

Opt. Express (3)

Opt. Lett. (2)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Scheme of the shaper-assisted MCARS setup. (b) Experimental setup: FI, Faraday isolator; F1, interference bandpass filter at 780 nm ; F2, long-pass ( λ > 789 nm ) interference filter; MO1-2, microscope objectives; F3, short-pass interference filter.

Fig. 2
Fig. 2

(a) CARS spectrum of CH 2 I 2 with broadband Stokes, i.e., full transmission (black curve) and with tailored Stokes, i.e., three pixels transmit light at the position of the traced curve (red). Inset, magnification of the CARS spectrum with tailored Stokes shows background suppression (log scale). (b) Selection of regions of interest in the spectrum of PET. Black curve, full spectrum; red curve, excitation with a window in the fingerprint region and a narrow part around 3049 cm 1 ; blue curve, narrowband excitation of the band at 1780 cm 1 .

Fig. 3
Fig. 3

Chemical selectivity with single-channel detection. (a)–(c) CARS spectra with broadband Stokes (black dotted curves) and with tailored Stokes spectra for each mask [respectively, for PE (blue), PS (red), and PMMA (green)]. (d) CARS spectra of pure polymers. (e)–(g) Chemical maps obtained with the respective amplitude masks. (h) Resulting RGB image of polymer.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

A ( Ω ) = 0 d ω [ M ( ω ) E S * ( ω ) ] E P ( ω + Ω ) ,

Metrics