We present a polarization-sensitive spectral-domain optical-coherence-tomography system that is capable of retrieving, with a single camera, both retardation and optical axis orientation. The method is based on a differentiation between orthogonal polarization channels through spatial modulation introduced by an electro-optic modulator. Proof-of-principle measurements using a wave plate as a sample are provided, and results of the method for in vivo imaging of the birefringent structures within the human nail fold are presented. Furthermore, we demonstrate the capability of such systems to perform ultra-high-speed polarization-sensitive imaging at 100.000A-scanss.

© 2010 Optical Society of America

Full Article  |  PDF Article


  • View by:
  • |
  • |
  • |

  1. E. Götzinger, M. Pircher, and C. K. Hitzenberger, Opt. Express 13, 10217 (2005).
    [Crossref] [PubMed]
  2. B. Baumann, E. Götzinger, M. Pircher, and C. K. Hitzenberger, Opt. Express 15, 1054 (2007).
    [Crossref] [PubMed]
  3. B. Cense, M. Mujat, T. C. Chen, B. H. Park, and J. F. de Boer, Opt. Express 15, 2421 (2007).
    [Crossref] [PubMed]
  4. Y. Yasuno, S. Makita, Y. Sutoh, M. Itoh, and T. Yatagai, Opt. Lett. 27, 1803 (2002).
  5. M. Zhao and J. A. Izatt, Opt. Lett. 34, 205 (2009).
    [Crossref] [PubMed]
  6. C. K. Hitzenberger, E. Götzinger, M. Sticker, M. Pircher, and A. F. Fercher, Opt. Express 9, 780 (2001).
    [Crossref] [PubMed]
  7. C. Fan, Y. Wang, and R. K. Wang, Opt. Express 15, 7950 (2007).
    [Crossref] [PubMed]
  8. C. Y. Oh, S. H. Yun, B. J. Vakoc, M. Shishkov, A. E. Desjardins, B. H. Park, J. F. de Boer, G. J. Tearney, and B. E. Bouma, Opt. Express 16, 1096 (2008).
    [Crossref] [PubMed]
  9. R. A. Leitgeb, R. Michaely, T. Lasser, and S. C. Sekhar, Opt. Lett. 32, 3453 (2007).
    [Crossref] [PubMed]
  10. T. Schmoll, C. Kolbitsch, and R. A. Leitgeb, Opt. Express 17, 4166 (2009).
    [Crossref] [PubMed]

2009 (2)

2008 (1)

2007 (4)

2005 (1)

2002 (1)

2001 (1)

Baumann, B.

Bouma, B. E.

Cense, B.

Chen, T. C.

de Boer, J. F.

Desjardins, A. E.

Fan, C.

Fercher, A. F.

Götzinger, E.

Hitzenberger, C. K.

Itoh, M.

Izatt, J. A.

Kolbitsch, C.

Lasser, T.

Leitgeb, R. A.

Makita, S.

Michaely, R.

Mujat, M.

Oh, C. Y.

Park, B. H.

Pircher, M.

Schmoll, T.

Sekhar, S. C.

Shishkov, M.

Sticker, M.

Sutoh, Y.

Tearney, G. J.

Vakoc, B. J.

Wang, R. K.

Wang, Y.

Yasuno, Y.

Yatagai, T.

Yun, S. H.

Zhao, M.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.

Figures (4)

Fig. 1
Fig. 1

Polarization separation scheme. See text for details.

Fig. 2
Fig. 2

Optical setup. The gray elements represent the configuration to minimize crosstalk between orthogonal polarization states. FC, fiber coupler, BS, nonpolarizing beam splitter; PBS, polarizing beam splitter; POL, polarizer; DISP, dispersion-compensating prism pairs; QWP, quarter-wave plate; EOM, electro-optical modulator; DG, diffraction grating; LSC, line scan camera.

Fig. 3
Fig. 3

Measured versus set fast-axis orientation ( θ m ) and retardation ( δ m ) . (a) Plot of θ m (gray) as a function of θ s for retardation set to 40 deg (black). (b) θ m and δ m over depth. Gray, θ m ; black, δ m . Solid lines represent set values (error bars, standard deviation).

Fig. 4
Fig. 4

In vivo OCT images of human nail fold. (a) Intensity image: a, epidermis; b, dermis; c, cuticle; d, nail plate; e, nail bed; f, nail matrix. (b) Retardation image; white arrows show birefringent layers. (c) Image of fast-axis orientation; white arrows show birefringent layers. (d) Retardation image recorded at 100.000 A -scans s .