Abstract

Flow cytometry techniques often rely on detecting fluorescence from single cells flowing through the cross section of a laser beam, providing invaluable information on vast numbers of cells. Such techniques, however, are often limited in their ability to resolve clusters of cells or parallel cell flow through large vessels. We present a confocal imaging technique that images unstained cells flowing in parallel through a wide channel, using spectrally encoded reflectance confocal microscopy that does not require mechanical scanning. Images of red blood cells from our system are compared to conventional transmission microscopy, and imaging of flowing red blood cells in vitro is experimentally demonstrated.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. L. Givan, Methods in Cell Biology (Academic, 2001).
  2. J. Novak, I. Georgakoudi, X. Wei, A. Prossin, and C. P. Lin, Opt. Lett. 29, 77 (2004).
    [CrossRef] [PubMed]
  3. I. H. Sarelius and B. R. Duling, Am. J. Physiol, Heart Circ. Physiol. 243, H1018 (1982).
  4. M. Rajadhyaksha, R. R. Anderson, and R. H. Webb, Appl. Opt. 38, 2105 (1999).
    [CrossRef]
  5. G. J. Tearney, R. H. Webb, and B. E. Bouma, Opt. Lett. 23, 1152 (1998).
    [CrossRef]
  6. D. Yelin, I. Rizvi, W. M. White, J. T. Motz, T. Hasan, B. E. Bouma, and G. J. Tearney, Nature 443, 765 (2006).
    [CrossRef] [PubMed]
  7. D. Yelin, B. E. Bouma, J. J. Rosowsky, and G. J. Tearney, Opt. Express 16, 14836 (2008).
    [CrossRef] [PubMed]
  8. S. V. Tsinopoulos and D. Polyzos, Appl. Opt. 38, 5499 (1999).
    [CrossRef]
  9. L. Almany and D. Seliktar, Biomaterials 26, 2467 (2005).
    [CrossRef]
  10. C. Boudoux, S. Yun, W. Oh, W. White, N. Iftimia, M. Shishkov, B. Bouma, and G. Tearney, Opt. Express 13, 8214 (2005).
    [CrossRef] [PubMed]
  11. D. Yelin, B. E. Bouma, S. H. Yun, and G. J. Tearney, Opt. Lett. 29, 2408 (2004).
    [CrossRef] [PubMed]
  12. J. J. Bishop, P. R. Nance, A. S. Popel, M. Intaglietta, and P. C. Johnson, Am. J. Physiol, Heart Circ. Physiol. 280, H222 (2001).

2008 (1)

2006 (1)

D. Yelin, I. Rizvi, W. M. White, J. T. Motz, T. Hasan, B. E. Bouma, and G. J. Tearney, Nature 443, 765 (2006).
[CrossRef] [PubMed]

2005 (2)

2004 (2)

2001 (2)

A. L. Givan, Methods in Cell Biology (Academic, 2001).

J. J. Bishop, P. R. Nance, A. S. Popel, M. Intaglietta, and P. C. Johnson, Am. J. Physiol, Heart Circ. Physiol. 280, H222 (2001).

1999 (2)

1998 (1)

1982 (1)

I. H. Sarelius and B. R. Duling, Am. J. Physiol, Heart Circ. Physiol. 243, H1018 (1982).

Almany, L.

L. Almany and D. Seliktar, Biomaterials 26, 2467 (2005).
[CrossRef]

Anderson, R. R.

Bishop, J. J.

J. J. Bishop, P. R. Nance, A. S. Popel, M. Intaglietta, and P. C. Johnson, Am. J. Physiol, Heart Circ. Physiol. 280, H222 (2001).

Boudoux, C.

Bouma, B.

Bouma, B. E.

Duling, B. R.

I. H. Sarelius and B. R. Duling, Am. J. Physiol, Heart Circ. Physiol. 243, H1018 (1982).

Georgakoudi, I.

Givan, A. L.

A. L. Givan, Methods in Cell Biology (Academic, 2001).

Hasan, T.

D. Yelin, I. Rizvi, W. M. White, J. T. Motz, T. Hasan, B. E. Bouma, and G. J. Tearney, Nature 443, 765 (2006).
[CrossRef] [PubMed]

Iftimia, N.

Intaglietta, M.

J. J. Bishop, P. R. Nance, A. S. Popel, M. Intaglietta, and P. C. Johnson, Am. J. Physiol, Heart Circ. Physiol. 280, H222 (2001).

Johnson, P. C.

J. J. Bishop, P. R. Nance, A. S. Popel, M. Intaglietta, and P. C. Johnson, Am. J. Physiol, Heart Circ. Physiol. 280, H222 (2001).

Lin, C. P.

Motz, J. T.

D. Yelin, I. Rizvi, W. M. White, J. T. Motz, T. Hasan, B. E. Bouma, and G. J. Tearney, Nature 443, 765 (2006).
[CrossRef] [PubMed]

Nance, P. R.

J. J. Bishop, P. R. Nance, A. S. Popel, M. Intaglietta, and P. C. Johnson, Am. J. Physiol, Heart Circ. Physiol. 280, H222 (2001).

Novak, J.

Oh, W.

Polyzos, D.

Popel, A. S.

J. J. Bishop, P. R. Nance, A. S. Popel, M. Intaglietta, and P. C. Johnson, Am. J. Physiol, Heart Circ. Physiol. 280, H222 (2001).

Prossin, A.

Rajadhyaksha, M.

Rizvi, I.

D. Yelin, I. Rizvi, W. M. White, J. T. Motz, T. Hasan, B. E. Bouma, and G. J. Tearney, Nature 443, 765 (2006).
[CrossRef] [PubMed]

Rosowsky, J. J.

Sarelius, I. H.

I. H. Sarelius and B. R. Duling, Am. J. Physiol, Heart Circ. Physiol. 243, H1018 (1982).

Seliktar, D.

L. Almany and D. Seliktar, Biomaterials 26, 2467 (2005).
[CrossRef]

Shishkov, M.

Tearney, G.

Tearney, G. J.

Tsinopoulos, S. V.

Webb, R. H.

Wei, X.

White, W.

White, W. M.

D. Yelin, I. Rizvi, W. M. White, J. T. Motz, T. Hasan, B. E. Bouma, and G. J. Tearney, Nature 443, 765 (2006).
[CrossRef] [PubMed]

Yelin, D.

Yun, S.

Yun, S. H.

Am. J. Physiol, Heart Circ. Physiol. (2)

I. H. Sarelius and B. R. Duling, Am. J. Physiol, Heart Circ. Physiol. 243, H1018 (1982).

J. J. Bishop, P. R. Nance, A. S. Popel, M. Intaglietta, and P. C. Johnson, Am. J. Physiol, Heart Circ. Physiol. 280, H222 (2001).

Appl. Opt. (2)

Biomaterials (1)

L. Almany and D. Seliktar, Biomaterials 26, 2467 (2005).
[CrossRef]

Nature (1)

D. Yelin, I. Rizvi, W. M. White, J. T. Motz, T. Hasan, B. E. Bouma, and G. J. Tearney, Nature 443, 765 (2006).
[CrossRef] [PubMed]

Opt. Express (2)

Opt. Lett. (3)

Other (1)

A. L. Givan, Methods in Cell Biology (Academic, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic of the SECM flow cytometry system.

Fig. 2
Fig. 2

Comparison of SECM and transmission brightfield images. (a) Depth-integrated SECM image of blood cells in hydrogel; scale bar represents 100 μm . (b)–(e) Magnified views of four selected regions show individual cells from the SECM image (top row) in comparison with brightfield microscopy (bottom row). (e) A characteristic crenated cell is visible both in the SECM and the brightfield image. Scale bars represent 5 μm .

Fig. 3
Fig. 3

Flow images of blood cells using SECM without mechanical scanning. (a) Bright spots in a 4-s-long acquisition correspond to flowing blood cells. Horizontal scale bar represents 50 μm . Vertical scale bar represents 200 ms . (b)–(e) Magnified views of the four marked rectangles in (a), which contain single RBCs. Horizontal scale bars represent 5 μm . Vertical scale bars represent 5 ms . (f) Velocity profile across the chamber obtained from measuring the averaged vertical dimensions of the cells. A power-law fit of the data is marked by a dashed curve.

Metrics