Abstract

The solid immersion lens (SIL) is a well-developed near-field optical device for imaging and data storage. Recent experiments have demonstrated high-quality imaging beyond the diffraction limit by nanoscale lenses in an SIL-type implementation [Nature 460, 498 (2009)]; we call these nSIL. A question arises as to what resolution is obtainable with an nSIL. From full three-dimensional, finite-difference time-domain calculations, we demonstrate that the FWHM of the focal spot of an objective-lens–nSIL system can be reduced by greater than 25% compared to a regular macroscopic SIL.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription