Abstract

We describe a simple, self-aligned confocal transmission microscopy technique based on two-photon-induced photocurrents of silicon photodiodes. Silicon detectors produce photocurrents in quadratic dependence on incident intensity under the pulsed illumination of light with wavelengths longer than 1.2μm. We exploit this nonlinear process to reject out-of-focus background and perform depth-sectioning microscopic imaging. We demonstrate a comparable background rejection capability of the technique to linear confocal detection and present three-dimensional imaging in biological specimens.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Wilson and C. J. R. Sheppard, Theory and Practice of Scanning Optical Microscopy (Academic, 1984).
  2. T. Pons and J. Mertz, J. Opt. Soc. Am. B 21, 1486 (2004).
    [CrossRef]
  3. C. Yang and J. Mertz, Opt. Lett. 28, 224 (2003).
    [CrossRef] [PubMed]
  4. D. Lim, K. K. Chu, and J. Mertz, Opt. Lett. 33, 1345 (2008).
    [CrossRef] [PubMed]
  5. C. Xu and W. Denk, Appl. Phys. Lett. 71, 2578 (1997).
    [CrossRef]
  6. F.-J. Kao, M.-K. Huang, Y.-S. Wang, S.-L. Huang, M.-K. Lee, and C.-K. Sun, Opt. Lett. 24, 1407 (1999).
    [CrossRef]
  7. L. P. Barry, P. G. Bollond, J. M. Dudley, J. D. Harvey, and R. Leonhardt, IEEE Electronics Letters 32, 1992 (1996).
    [CrossRef]
  8. T. Wilson and A. R. Carlini, Opt. Lett. 12, 227 (1987).
    [CrossRef] [PubMed]
  9. T. Wilson, in Handbook of Biological Confocal Microscopy, J.B.Pawley, ed. (Plenum, 1995).
  10. K. K. Chu, R. Yi, and J. Mertz, Opt. Express 15, 2476 (2007).
    [CrossRef] [PubMed]
  11. S. Yazdanfar, C. Joo, C. Zhan, M. Y. Berezin, W. J. Akers, and S. Achilefu, Opt. Express, submitted for publication.
  12. M. Han, G. Giese, and J. Bille, Opt. Express 13, 5791 (2005).
    [CrossRef] [PubMed]

2008 (1)

2007 (1)

2005 (1)

2004 (1)

2003 (1)

1999 (1)

1997 (1)

C. Xu and W. Denk, Appl. Phys. Lett. 71, 2578 (1997).
[CrossRef]

1996 (1)

L. P. Barry, P. G. Bollond, J. M. Dudley, J. D. Harvey, and R. Leonhardt, IEEE Electronics Letters 32, 1992 (1996).
[CrossRef]

1987 (1)

Achilefu, S.

S. Yazdanfar, C. Joo, C. Zhan, M. Y. Berezin, W. J. Akers, and S. Achilefu, Opt. Express, submitted for publication.

Akers, W. J.

S. Yazdanfar, C. Joo, C. Zhan, M. Y. Berezin, W. J. Akers, and S. Achilefu, Opt. Express, submitted for publication.

Barry, L. P.

L. P. Barry, P. G. Bollond, J. M. Dudley, J. D. Harvey, and R. Leonhardt, IEEE Electronics Letters 32, 1992 (1996).
[CrossRef]

Berezin, M. Y.

S. Yazdanfar, C. Joo, C. Zhan, M. Y. Berezin, W. J. Akers, and S. Achilefu, Opt. Express, submitted for publication.

Bille, J.

Bollond, P. G.

L. P. Barry, P. G. Bollond, J. M. Dudley, J. D. Harvey, and R. Leonhardt, IEEE Electronics Letters 32, 1992 (1996).
[CrossRef]

Carlini, A. R.

Chu, K. K.

Denk, W.

C. Xu and W. Denk, Appl. Phys. Lett. 71, 2578 (1997).
[CrossRef]

Dudley, J. M.

L. P. Barry, P. G. Bollond, J. M. Dudley, J. D. Harvey, and R. Leonhardt, IEEE Electronics Letters 32, 1992 (1996).
[CrossRef]

Giese, G.

Han, M.

Harvey, J. D.

L. P. Barry, P. G. Bollond, J. M. Dudley, J. D. Harvey, and R. Leonhardt, IEEE Electronics Letters 32, 1992 (1996).
[CrossRef]

Huang, M.-K.

Huang, S.-L.

Joo, C.

S. Yazdanfar, C. Joo, C. Zhan, M. Y. Berezin, W. J. Akers, and S. Achilefu, Opt. Express, submitted for publication.

Kao, F.-J.

Lee, M.-K.

Leonhardt, R.

L. P. Barry, P. G. Bollond, J. M. Dudley, J. D. Harvey, and R. Leonhardt, IEEE Electronics Letters 32, 1992 (1996).
[CrossRef]

Lim, D.

Mertz, J.

Pons, T.

Sheppard, C. J. R.

T. Wilson and C. J. R. Sheppard, Theory and Practice of Scanning Optical Microscopy (Academic, 1984).

Sun, C.-K.

Wang, Y.-S.

Wilson, T.

T. Wilson and A. R. Carlini, Opt. Lett. 12, 227 (1987).
[CrossRef] [PubMed]

T. Wilson and C. J. R. Sheppard, Theory and Practice of Scanning Optical Microscopy (Academic, 1984).

T. Wilson, in Handbook of Biological Confocal Microscopy, J.B.Pawley, ed. (Plenum, 1995).

Xu, C.

C. Xu and W. Denk, Appl. Phys. Lett. 71, 2578 (1997).
[CrossRef]

Yang, C.

Yazdanfar, S.

S. Yazdanfar, C. Joo, C. Zhan, M. Y. Berezin, W. J. Akers, and S. Achilefu, Opt. Express, submitted for publication.

Yi, R.

Zhan, C.

S. Yazdanfar, C. Joo, C. Zhan, M. Y. Berezin, W. J. Akers, and S. Achilefu, Opt. Express, submitted for publication.

Appl. Phys. Lett. (1)

C. Xu and W. Denk, Appl. Phys. Lett. 71, 2578 (1997).
[CrossRef]

IEEE Electronics Letters (1)

L. P. Barry, P. G. Bollond, J. M. Dudley, J. D. Harvey, and R. Leonhardt, IEEE Electronics Letters 32, 1992 (1996).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Express (2)

Opt. Lett. (4)

Other (3)

T. Wilson and C. J. R. Sheppard, Theory and Practice of Scanning Optical Microscopy (Academic, 1984).

T. Wilson, in Handbook of Biological Confocal Microscopy, J.B.Pawley, ed. (Plenum, 1995).

S. Yazdanfar, C. Joo, C. Zhan, M. Y. Berezin, W. J. Akers, and S. Achilefu, Opt. Express, submitted for publication.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Si-PD output was measured under focused illumination of an 1.55 μ m light. CW illumination did not generate a signal, as the incident light energy was below the Si bandgap. However, under PW illumination, nonlinear absorption in Si generated appreciable photocurrents, which exhibited a quadratic dependence on incident intensity.

Fig. 2
Fig. 2

Schematic of ACM. A beam from a 1.55 μ m femtosecond fiber laser was employed as a light source. The light transmitted through the sample was focused onto and detected by the Si-PD. Foc-OBJ and Det-OBJ are microscope objectives for focusing and detection path.

Fig. 3
Fig. 3

Virtual pinhole effect exhibited by nonlinear response of Si-PD was compared with that of linear confocal detection (Ge- PD + 10 μ m diameter pinhole). Scanning both detectors through focus revealed a comparable axial response between the Si-PD and linear confocal detection. The solid curve indicates a fit to 1 z 2 .

Fig. 4
Fig. 4

(a)–(b) Images of a fixed rat retina tissue recorded with Si-PD based ACM and Ge-PD based linear detection, respectively. Note the improved image contrast provided by Si-PD based nonlinear detection. (c)–(f) Si-PD based ACM images of fixed rat choroid tissue at tissue surface and 20, 40, 60 μ m below the tissue surface, respectively. Vascular structures and epithelium are clearly visible at each depth with high contrast. The scale bar represents 50 μ m .

Metrics