Abstract

An optical configuration for digital holographic microscopy is presented. Digital off-axis holograms are recorded by using a single-cube beam splitter in a nonconventional configuration so as to both split and combine a diverging spherical wavefront emerging from a microscope objective. When a plane numerical reference wavefront is used for the reconstruction of the recorded digital hologram, the phase curvature introduced by the microscope objective together with the illuminating wave to the object wave can be physically compensated.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Colomb, E. Cuche, F. Charrière, J. Kühn, N. Aspert, F. Montfort, P. Marquet, and C. Depeursinge, Appl. Opt. 45, 851 (2006).
    [CrossRef] [PubMed]
  2. T. Colomb, J. Kühn, F. Charrière, C. Depeursinge, P. Marquet, and N. Aspert, Opt. Express 14, 4300 (2006).
    [CrossRef] [PubMed]
  3. D. Malacara, Optical Shop Testing (Wiley, 1992).
  4. Z. Ya'nan, Q. Weijuan, L. De'an, L. Zhu, Z. Yu, and L. Liren, Appl. Phys. Lett. 89, 112912 (2006).
    [CrossRef]
  5. J. A. Ferrari and E. M. Frins, Opt. Commun. 279, 235 (2007).
    [CrossRef]
  6. D. Daly, R. F. Stevens, M. C. Hutleyt, and N. Davies, Meas. Sci. Technol. 1, 759 (1990).
    [CrossRef]

2007

J. A. Ferrari and E. M. Frins, Opt. Commun. 279, 235 (2007).
[CrossRef]

2006

1990

D. Daly, R. F. Stevens, M. C. Hutleyt, and N. Davies, Meas. Sci. Technol. 1, 759 (1990).
[CrossRef]

Aspert, N.

Charrière, F.

Colomb, T.

Cuche, E.

Daly, D.

D. Daly, R. F. Stevens, M. C. Hutleyt, and N. Davies, Meas. Sci. Technol. 1, 759 (1990).
[CrossRef]

Davies, N.

D. Daly, R. F. Stevens, M. C. Hutleyt, and N. Davies, Meas. Sci. Technol. 1, 759 (1990).
[CrossRef]

De'an, L.

Z. Ya'nan, Q. Weijuan, L. De'an, L. Zhu, Z. Yu, and L. Liren, Appl. Phys. Lett. 89, 112912 (2006).
[CrossRef]

Depeursinge, C.

Ferrari, J. A.

J. A. Ferrari and E. M. Frins, Opt. Commun. 279, 235 (2007).
[CrossRef]

Frins, E. M.

J. A. Ferrari and E. M. Frins, Opt. Commun. 279, 235 (2007).
[CrossRef]

Hutleyt, M. C.

D. Daly, R. F. Stevens, M. C. Hutleyt, and N. Davies, Meas. Sci. Technol. 1, 759 (1990).
[CrossRef]

Kühn, J.

Liren, L.

Z. Ya'nan, Q. Weijuan, L. De'an, L. Zhu, Z. Yu, and L. Liren, Appl. Phys. Lett. 89, 112912 (2006).
[CrossRef]

Malacara, D.

D. Malacara, Optical Shop Testing (Wiley, 1992).

Marquet, P.

Montfort, F.

Stevens, R. F.

D. Daly, R. F. Stevens, M. C. Hutleyt, and N. Davies, Meas. Sci. Technol. 1, 759 (1990).
[CrossRef]

Weijuan, Q.

Z. Ya'nan, Q. Weijuan, L. De'an, L. Zhu, Z. Yu, and L. Liren, Appl. Phys. Lett. 89, 112912 (2006).
[CrossRef]

Ya'nan, Z.

Z. Ya'nan, Q. Weijuan, L. De'an, L. Zhu, Z. Yu, and L. Liren, Appl. Phys. Lett. 89, 112912 (2006).
[CrossRef]

Yu, Z.

Z. Ya'nan, Q. Weijuan, L. De'an, L. Zhu, Z. Yu, and L. Liren, Appl. Phys. Lett. 89, 112912 (2006).
[CrossRef]

Zhu, L.

Z. Ya'nan, Q. Weijuan, L. De'an, L. Zhu, Z. Yu, and L. Liren, Appl. Phys. Lett. 89, 112912 (2006).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

Z. Ya'nan, Q. Weijuan, L. De'an, L. Zhu, Z. Yu, and L. Liren, Appl. Phys. Lett. 89, 112912 (2006).
[CrossRef]

Meas. Sci. Technol.

D. Daly, R. F. Stevens, M. C. Hutleyt, and N. Davies, Meas. Sci. Technol. 1, 759 (1990).
[CrossRef]

Opt. Commun.

J. A. Ferrari and E. M. Frins, Opt. Commun. 279, 235 (2007).
[CrossRef]

Opt. Express

Other

D. Malacara, Optical Shop Testing (Wiley, 1992).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic of the proposed DHM setup. Left, transmission mode; right, reflection mode. In the left figure the dashed rays (red online) are used to illustrate the image formation of the whole setup.

Fig. 2
Fig. 2

Ray trajectories in the BS.

Fig. 3
Fig. 3

Phase image of a photoresist refractive transmission lens (diameter of 155 μ m and maximal height of 16.5 μ m ) obtained with the proposed DHM setup. (a) Digital hologram recorded in the transmission mode. (b) Spectra of the hologram in the frequency domain; the spectrum for the real image is marked by the white circle. (c) Wrapped phase, (d) unwrapped phase, and (e) height profile taken along the dark solid line in (d).

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

{ 1 2 l 2 ( 1 sin 2 θ 2 ) ( 1 sin   θ 1 1 sin 2 θ 1 ) = 1 2 d 2 ( 1 sin 2 θ 1 ) ( 1 sin   θ 2 1 sin 2 θ 2 ) sin   θ 1 = n   sin   θ 2 . } ,
I H ( x , y ) = | O | 2 + | R | 2 + R O + R O = 1 + | A O | 2 + A O   exp [ j π λ ( S R x 2 h r S O x 2 h o + S R y 2 h r S O y 2 h o ) ] exp [ j π λ ( 1 h r 1 h o ) ( x 2 + y 2 ) + j 2 π λ ( S R x h r S O x h o ) x + j 2 π λ ( S R y h r S o y h o ) y ] exp [ j φ ( x , y ) ] + A O   exp [ j π λ ( S R x 2 h r S O x 2 h o + S R y 2 h r S O y 2 h o ) ] exp [ j π λ ( 1 h r 1 h o ) ( x 2 + y 2 ) j 2 π λ h r ( S R x h r S O x h o ) x j 2 π λ h r ( S R y h r S o y h o ) y ] exp [ j φ ( x , y ) ] ,
I H ( x , y ) = 1 + | A O | 2 + exp [ j 4 π ( S O x x + S O y y ) λ h o ] exp [ j φ ( x , y ) ] + exp [ j 4 π ( S O x x + S O y y ) λ h o ] exp [ j φ ( x , y ) ] .
I H F ( f x , f y ) = ( 1 + | A O | 2 ) δ ( f x , f y ) + A O δ ( f x 2 S O x λ h o , f y 2 S O y λ h o ) FFT { exp [ j φ ( x , y ) ] } + A O δ ( f x + 2 S O x λ h o , f y + 2 S O y λ h o ) FFT { exp [ j φ ( x , y ) ] } ,
Δ = S λ s = λ 2   tan   θ .
ψ HF ( f x , f y ) = A O   exp   δ ( f x , f y ) FFT { exp [ j φ ( x , y ) ] } ,
{ ψ I ( n Δ x i , m Δ y i ) = exp ( j k d ) j λ d FFT 1 { ψ HF ( k Δ f x , l Δ f y ) G ( k Δ f x , l Δ f y ) } , G ( k Δ f x , l Δ f y ) = exp [ j 2 π d λ 1 ( λ k Δ f x ) 2 ( λ l Δ f y ) 2 ] , }

Metrics