Abstract

Surface plasmons excited by a focused femtosecond radially polarized beam on a metal surface form a standing wave pattern with a sharp peak that can be used as a “virtual probe” for surface plasmon microscopy. The rotational symmetry of radially polarized light effectively provides the TM polarization required for coupling to the surface plasmons while the short pulse nature of the probe allows for nonlinear processes to be studied.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Rothenhausler and W. Knoll, Nature 332, 615 (1988).
    [CrossRef]
  2. H. Kano, S. Mizuguchi, and S. Kawata, J. Opt. Soc. Am. B 15, 1381 (1998).
    [CrossRef]
  3. H. Kano and W. Knoll, Opt. Commun. 153, 235 (1998).
    [CrossRef]
  4. H. Kano and W. Knoll, Opt. Commun. 182, 11 (2000).
    [CrossRef]
  5. M. G. Somekh, S. G. Liu, T. S. Velinov, and C. W. See, Opt. Lett. 25, 823 (2000).
    [CrossRef]
  6. Q. Zhan, Opt. Lett. 31, 1726 (2006).
    [CrossRef] [PubMed]
  7. A. Bouhelier, F. Ignatovich, A. Bruyant, C. Huang, G. Colas des Francs, J. C. Weeber, A. Dereux, G. P. Wiederrecht, and L. Novotny, Opt. Lett. 32, 2535 (2007).
    [CrossRef] [PubMed]
  8. K. J. Moh, X. C. Yuan, J. Bu, S. W. Zhu, and B. Z. Gao, Opt. Express 16, 20734 (2008).
    [CrossRef] [PubMed]
  9. H. Kano and S. Kawata, Opt. Lett. 21, 1848 (1996).
    [CrossRef] [PubMed]
  10. K. J. Moh, X. C. Yuan, J. Bu, R. E. Burge, and B. Z. Gao, Appl. Opt. 46, 7544 (2007).
    [CrossRef] [PubMed]
  11. S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, Appl. Phys. B 72, 109 (2001).

2008 (1)

2007 (2)

2006 (1)

2001 (1)

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, Appl. Phys. B 72, 109 (2001).

2000 (2)

1998 (2)

1996 (1)

1988 (1)

B. Rothenhausler and W. Knoll, Nature 332, 615 (1988).
[CrossRef]

Bouhelier, A.

Bruyant, A.

Bu, J.

Burge, R. E.

Dereux, A.

Dorn, R.

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, Appl. Phys. B 72, 109 (2001).

Eberler, M.

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, Appl. Phys. B 72, 109 (2001).

Francs, G. Colas des

Gao, B. Z.

Glöckl, O.

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, Appl. Phys. B 72, 109 (2001).

Huang, C.

Ignatovich, F.

Kano, H.

Kawata, S.

Knoll, W.

H. Kano and W. Knoll, Opt. Commun. 182, 11 (2000).
[CrossRef]

H. Kano and W. Knoll, Opt. Commun. 153, 235 (1998).
[CrossRef]

B. Rothenhausler and W. Knoll, Nature 332, 615 (1988).
[CrossRef]

Leuchs, G.

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, Appl. Phys. B 72, 109 (2001).

Liu, S. G.

Mizuguchi, S.

Moh, K. J.

Novotny, L.

Quabis, S.

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, Appl. Phys. B 72, 109 (2001).

Rothenhausler, B.

B. Rothenhausler and W. Knoll, Nature 332, 615 (1988).
[CrossRef]

See, C. W.

Somekh, M. G.

Velinov, T. S.

Weeber, J. C.

Wiederrecht, G. P.

Yuan, X. C.

Zhan, Q.

Zhu, S. W.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Optical configuration for exciting SPs using a high index hemispherical lens. There is full rotational symmetry about the optic axis with RP light. The generated SP has a Bessel-like spatial distribution.

Fig. 2
Fig. 2

Graphs of the calculated angle at which the SP is excited for various sample ( n s ) refractive indices on a gold (Au) layer at 488, 532, 632.8, and 785 nm excitation.

Fig. 3
Fig. 3

Emitted fluorescence for (a) azimuth (TE), (b) linear, (c) circular, and (d) radial (TM) polarization. The values indicate the mean detected flouresence intensity for each polarization compared to the RP beam.

Fig. 4
Fig. 4

Two-photon excitation fluorescence image of a leaf petiole obtained by (a) scanning the SP virtual probe in a 1 × 1 mm region and (b) nonSP excited fluorescence.

Tables (1)

Tables Icon

Table 1 Refractive Index ( n s ) Range for SP Excitation

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

θ sp = sin 1 ε 2 ε 3 ε 1 ( ε 2 + ε 3 ) ,

Metrics