Abstract

We report the experimental confirmation of the evanescent Bessel beam generation via surface plamson resonance excitation with a radially polarized beam. The interference of surface plasmon waves excited by a radially polarized beam creates an evanescent Bessel beam with enhanced localized field and spot size beyond the diffraction limit. The excitation of the surface plasmon is confirmed by the observation of a narrow dark ring at the back focal plane. Two-dimensional intensity distributions at different distances from the sample surface are mapped by a collection-mode near-field scanning optical microscope to verify the nondiffracting and decaying natures of the evanescent Bessel beam.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Q. Zhan, Opt. Lett. 31, 1726 (2006).
    [CrossRef] [PubMed]
  2. A. Bouhelier, F. Ignatovich, A. Bruyant, C. Huang, G. Colas Des Francs, J.-C. Weeber, A. Dereux, G. P. Wiederrecht, and L. Novotny, Opt. Lett. 32, 2535 (2007).
    [CrossRef] [PubMed]
  3. Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, Nano Lett. 5, 1726 (2005).
    [CrossRef] [PubMed]
  4. H. Kano, S. Mizuguchi, and S. Kawata, J. Opt. Soc. Am. B 15, 1381 (1998).
    [CrossRef]
  5. G. Volpe and D. Petrov, Opt. Commun. 237, 89 (2004).
    [CrossRef]
  6. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1998).
  7. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge U. Press, 2006).
  8. W. Chen and Q. Zhan, Opt. Express 15, 4106 (2007).
    [CrossRef] [PubMed]
  9. W. Chen and Q. Zhan, Proc. SPIE 6450, 64500D (2007).
    [CrossRef]

2007 (3)

2006 (1)

2005 (1)

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, Nano Lett. 5, 1726 (2005).
[CrossRef] [PubMed]

2004 (1)

G. Volpe and D. Petrov, Opt. Commun. 237, 89 (2004).
[CrossRef]

1998 (1)

Bouhelier, A.

Bruyant, A.

Chen, W.

Colas Des Francs, G.

Dereux, A.

Hecht, B.

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge U. Press, 2006).

Huang, C.

Ignatovich, F.

Kano, H.

Kawata, S.

Liu, Z.

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, Nano Lett. 5, 1726 (2005).
[CrossRef] [PubMed]

Mizuguchi, S.

Novotny, L.

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1998).

Petrov, D.

G. Volpe and D. Petrov, Opt. Commun. 237, 89 (2004).
[CrossRef]

Pikus, Y.

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, Nano Lett. 5, 1726 (2005).
[CrossRef] [PubMed]

Srituravanich, W.

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, Nano Lett. 5, 1726 (2005).
[CrossRef] [PubMed]

Steele, J. M.

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, Nano Lett. 5, 1726 (2005).
[CrossRef] [PubMed]

Sun, C.

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, Nano Lett. 5, 1726 (2005).
[CrossRef] [PubMed]

Volpe, G.

G. Volpe and D. Petrov, Opt. Commun. 237, 89 (2004).
[CrossRef]

Weeber, J.-C.

Wiederrecht, G. P.

Zhan, Q.

Zhang, X.

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, Nano Lett. 5, 1726 (2005).
[CrossRef] [PubMed]

J. Opt. Soc. Am. B (1)

Nano Lett. (1)

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, Nano Lett. 5, 1726 (2005).
[CrossRef] [PubMed]

Opt. Commun. (1)

G. Volpe and D. Petrov, Opt. Commun. 237, 89 (2004).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Proc. SPIE (1)

W. Chen and Q. Zhan, Proc. SPIE 6450, 64500D (2007).
[CrossRef]

Other (2)

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1998).

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge U. Press, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Experimental setup for the evanescent Bessel beam generation and confirmation. SPP, spiral phase plate; PM, photomask; OBJ, objective lens. (b) Illustration of surface plasmon excitation with focused radial polarization. RPB, radially polarized beam. (c) Radially polarized light pattern generated at the end of the fiber, and pictures of the beam after it passes through a linear analyzer oriented at different angles shown by the arrows. The patterns follow the rotation of the linear analyzer.

Fig. 2
Fig. 2

Intensity distribution at the back focal plane of the objective lens after reflection. The dark ring corresponds to the surface plasmon excitation. Surface plasmons are generated at all directions with radially polarized beam excitation.

Fig. 3
Fig. 3

(a) Measured near-field intensity distribution of evanescent Bessel beam. Multiple rings corresponding to surface plasmon wave propagation are observed. Because the apertured NSOM probe is more sensitive to E z 2 , a dark center is obtained as expected. Plot is in logarithmic scale for better visualization of outer rings. (b) Theoretically predicted normalized NSOM signal ( E z 2 ) in the near-field. (c) Measured far-field intensity distribution. Much weaker background leakage signal and scattering light are detected.

Fig. 4
Fig. 4

Comparison of measured and calculated transverse profile of intensity distribution. The experimental result agrees with the simulated result very well.

Fig. 5
Fig. 5

Measured nondiffracting nature of the evanescent Bessel beam. The intensity decays along the z axis, but the shape of the beam remains almost constant.

Fig. 6
Fig. 6

Measured evanescent decaying property of the evanescent Bessel beam. Decay length is measured to be 143 nm .

Metrics