Abstract

A 2×2 photonic crystal fiber (PCF) planar lightwave circuit (PLC) splitter, which splits optical power between two PCF channels, has been made by PCF-to-PLC connections. PCF array blocks were lithographically fabricated to have fiber V grooves and used to firmly hold PCFs and align them to the PLC splitter. The proposed splitter showed a rather flat splitting ratio over a wide wavelength range from 1250nmto1750nm. With the implemented splitter, we obtained a low excess loss of 1.6dB, a low polarization-dependent loss of 0.1dB, and a high return loss of 52dB. The ultrabroadband operation of the proposed splitter is expected to find applications in optical performance monitoring, Ethernet passive optical networks, and biomedical optics including optical coherence tomography.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. A. Birks, J. C. Knight, and P. St. J. Russell, Opt. Lett. 22, 961 (1997).
    [CrossRef] [PubMed]
  2. J. C. Knight, T. A. Birks, R. F. Cregan, P. St. J. Russell, and J. P. de Sandro, Electron. Lett. 34, 1347 (1998).
    [CrossRef]
  3. D. Mogilevtsev, T. A. Birks, and P. St. J. Russell, Opt. Lett. 23, 1662 (1998).
    [CrossRef]
  4. K. Nakajima, J. Zhou, K. Tajima, K. Kurokawa, C. Fukai, and I. Sankawa, J. Lightwave Technol. 23, 7 (2005).
    [CrossRef]
  5. S. Y. Ryu, H. Y. Choi, J. Na, E. Choi, G. Yang, and B. H. Lee, Opt. Quantum Electron. 37, 1191 (2005).
    [CrossRef]
  6. B. H. Lee, J. B. Eom, J. Kim, D. S. Moon, U.-C. Paek, and G.-H. Yang, Opt. Lett. 27, 812 (2002).
    [CrossRef]
  7. H. Kim, J. Kim, U.-C. Paek, B. H. Lee, and K. T. Kim, Opt. Lett. 29, 1194 (2004).
    [CrossRef] [PubMed]
  8. H. Yokota, H. Kawashiri, and Y. Sasaki, IEICE Trans. Electron. E91-C, 1136 (2008).
    [CrossRef]
  9. L. Xiao, M. S. Demokan, W. Jin, Y. Wang, and C.-L. Zhao, J. Lightwave Technol. 25, 3563 (2007).
    [CrossRef]
  10. D. B. Mortimore, Electron. Lett. 21, 742 (1985).
    [CrossRef]
  11. Y. Yamada, F. Hanawa, T. Kitoh, and T. Maruno, IEEE Photon. Technol. Lett. 4, 906 (1992).
    [CrossRef]
  12. M. Kawachi, Opt. Quantum Electron. 22, 391 (1990).
    [CrossRef]
  13. Y. Takeuchi, M. Hirayama, S. Sumida, and O. Kobayashi, Jpn. J. Appl. Phys. 37, 3665 (1998).
    [CrossRef]

2008 (1)

H. Yokota, H. Kawashiri, and Y. Sasaki, IEICE Trans. Electron. E91-C, 1136 (2008).
[CrossRef]

2007 (1)

2005 (2)

K. Nakajima, J. Zhou, K. Tajima, K. Kurokawa, C. Fukai, and I. Sankawa, J. Lightwave Technol. 23, 7 (2005).
[CrossRef]

S. Y. Ryu, H. Y. Choi, J. Na, E. Choi, G. Yang, and B. H. Lee, Opt. Quantum Electron. 37, 1191 (2005).
[CrossRef]

2004 (1)

2002 (1)

1998 (3)

J. C. Knight, T. A. Birks, R. F. Cregan, P. St. J. Russell, and J. P. de Sandro, Electron. Lett. 34, 1347 (1998).
[CrossRef]

D. Mogilevtsev, T. A. Birks, and P. St. J. Russell, Opt. Lett. 23, 1662 (1998).
[CrossRef]

Y. Takeuchi, M. Hirayama, S. Sumida, and O. Kobayashi, Jpn. J. Appl. Phys. 37, 3665 (1998).
[CrossRef]

1997 (1)

1992 (1)

Y. Yamada, F. Hanawa, T. Kitoh, and T. Maruno, IEEE Photon. Technol. Lett. 4, 906 (1992).
[CrossRef]

1990 (1)

M. Kawachi, Opt. Quantum Electron. 22, 391 (1990).
[CrossRef]

1985 (1)

D. B. Mortimore, Electron. Lett. 21, 742 (1985).
[CrossRef]

Birks, T. A.

Choi, E.

S. Y. Ryu, H. Y. Choi, J. Na, E. Choi, G. Yang, and B. H. Lee, Opt. Quantum Electron. 37, 1191 (2005).
[CrossRef]

Choi, H. Y.

S. Y. Ryu, H. Y. Choi, J. Na, E. Choi, G. Yang, and B. H. Lee, Opt. Quantum Electron. 37, 1191 (2005).
[CrossRef]

Cregan, R. F.

J. C. Knight, T. A. Birks, R. F. Cregan, P. St. J. Russell, and J. P. de Sandro, Electron. Lett. 34, 1347 (1998).
[CrossRef]

de Sandro, J. P.

J. C. Knight, T. A. Birks, R. F. Cregan, P. St. J. Russell, and J. P. de Sandro, Electron. Lett. 34, 1347 (1998).
[CrossRef]

Demokan, M. S.

Eom, J. B.

Fukai, C.

Hanawa, F.

Y. Yamada, F. Hanawa, T. Kitoh, and T. Maruno, IEEE Photon. Technol. Lett. 4, 906 (1992).
[CrossRef]

Hirayama, M.

Y. Takeuchi, M. Hirayama, S. Sumida, and O. Kobayashi, Jpn. J. Appl. Phys. 37, 3665 (1998).
[CrossRef]

Jin, W.

Kawachi, M.

M. Kawachi, Opt. Quantum Electron. 22, 391 (1990).
[CrossRef]

Kawashiri, H.

H. Yokota, H. Kawashiri, and Y. Sasaki, IEICE Trans. Electron. E91-C, 1136 (2008).
[CrossRef]

Kim, H.

Kim, J.

Kim, K. T.

Kitoh, T.

Y. Yamada, F. Hanawa, T. Kitoh, and T. Maruno, IEEE Photon. Technol. Lett. 4, 906 (1992).
[CrossRef]

Knight, J. C.

J. C. Knight, T. A. Birks, R. F. Cregan, P. St. J. Russell, and J. P. de Sandro, Electron. Lett. 34, 1347 (1998).
[CrossRef]

T. A. Birks, J. C. Knight, and P. St. J. Russell, Opt. Lett. 22, 961 (1997).
[CrossRef] [PubMed]

Kobayashi, O.

Y. Takeuchi, M. Hirayama, S. Sumida, and O. Kobayashi, Jpn. J. Appl. Phys. 37, 3665 (1998).
[CrossRef]

Kurokawa, K.

Lee, B. H.

Maruno, T.

Y. Yamada, F. Hanawa, T. Kitoh, and T. Maruno, IEEE Photon. Technol. Lett. 4, 906 (1992).
[CrossRef]

Mogilevtsev, D.

Moon, D. S.

Mortimore, D. B.

D. B. Mortimore, Electron. Lett. 21, 742 (1985).
[CrossRef]

Na, J.

S. Y. Ryu, H. Y. Choi, J. Na, E. Choi, G. Yang, and B. H. Lee, Opt. Quantum Electron. 37, 1191 (2005).
[CrossRef]

Nakajima, K.

Paek, U.-C.

Russell, P. St. J.

Ryu, S. Y.

S. Y. Ryu, H. Y. Choi, J. Na, E. Choi, G. Yang, and B. H. Lee, Opt. Quantum Electron. 37, 1191 (2005).
[CrossRef]

Sankawa, I.

Sasaki, Y.

H. Yokota, H. Kawashiri, and Y. Sasaki, IEICE Trans. Electron. E91-C, 1136 (2008).
[CrossRef]

Sumida, S.

Y. Takeuchi, M. Hirayama, S. Sumida, and O. Kobayashi, Jpn. J. Appl. Phys. 37, 3665 (1998).
[CrossRef]

Tajima, K.

Takeuchi, Y.

Y. Takeuchi, M. Hirayama, S. Sumida, and O. Kobayashi, Jpn. J. Appl. Phys. 37, 3665 (1998).
[CrossRef]

Wang, Y.

Xiao, L.

Yamada, Y.

Y. Yamada, F. Hanawa, T. Kitoh, and T. Maruno, IEEE Photon. Technol. Lett. 4, 906 (1992).
[CrossRef]

Yang, G.

S. Y. Ryu, H. Y. Choi, J. Na, E. Choi, G. Yang, and B. H. Lee, Opt. Quantum Electron. 37, 1191 (2005).
[CrossRef]

Yang, G.-H.

Yokota, H.

H. Yokota, H. Kawashiri, and Y. Sasaki, IEICE Trans. Electron. E91-C, 1136 (2008).
[CrossRef]

Zhao, C.-L.

Zhou, J.

Electron. Lett. (2)

J. C. Knight, T. A. Birks, R. F. Cregan, P. St. J. Russell, and J. P. de Sandro, Electron. Lett. 34, 1347 (1998).
[CrossRef]

D. B. Mortimore, Electron. Lett. 21, 742 (1985).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

Y. Yamada, F. Hanawa, T. Kitoh, and T. Maruno, IEEE Photon. Technol. Lett. 4, 906 (1992).
[CrossRef]

IEICE Trans. Electron. (1)

H. Yokota, H. Kawashiri, and Y. Sasaki, IEICE Trans. Electron. E91-C, 1136 (2008).
[CrossRef]

J. Lightwave Technol. (2)

Jpn. J. Appl. Phys. (1)

Y. Takeuchi, M. Hirayama, S. Sumida, and O. Kobayashi, Jpn. J. Appl. Phys. 37, 3665 (1998).
[CrossRef]

Opt. Lett. (4)

Opt. Quantum Electron. (2)

S. Y. Ryu, H. Y. Choi, J. Na, E. Choi, G. Yang, and B. H. Lee, Opt. Quantum Electron. 37, 1191 (2005).
[CrossRef]

M. Kawachi, Opt. Quantum Electron. 22, 391 (1990).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

PCF array block structure by using lithographically fabricated fiber V grooves and microscope end-surface image of the PCF array block: (a) schematic of the top view of the 2 × 2 splitter chip and (b) microscope image.

Fig. 2
Fig. 2

Two PCF block arrays to the PLC chip connection procedure with UV curable adhesive. Insets, microscopic images of the connection of the PCF PLC splitter.

Fig. 3
Fig. 3

Splitting ratio on linear scale measured at two output ports of (a) the PCF PLC splitter and (b) the PCF coupler.

Fig. 4
Fig. 4

Excess loss changes of the PCF PLC splitter (solid curve) and the PCF coupler (dashed curve) fabricated using fused biconical tapered method in terms of wavelength.

Fig. 5
Fig. 5

(a) PDL changes of the PCF PLC splitter (solid lines) and PCF coupler (dashed lines) in terms of wavelength. (b) BER measurement for PCF PLC splitter and PCF coupler at 1310 nm ( 10 Gbps ) . The circles show the results for the PCF coupler, and the squares show the results for the PCF PLC splitter. The inset figure is the eye diagram for PCF PLC splitter at the error-free region.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

IL channel = 10 log P channel P source .
EL = 10 log P 1 + P 2 P source .

Metrics