Abstract

We report a demonstration of near-field nanoimaging using nanoscale photodetector (NPD) array. The NPD array has detector pixels with subwavelength dimension and is capable of pixel addressing. An active-media finite-difference time-domain simulation of the NPD array shows an imaging resolution of 150nm for 1.55μm light. Additionally, we demonstrate the realization and characterization of the NPD array. The smallest NPD array obtained has 100-nm-wide pixels with 100nm spacing. A responsivity of 0.28AW at 1.31μm and 3.3V bias is registered for a 2×2 NPD array pixel. The corresponding photocurrent is 735nA with a dark current of 0.483nA. Using near-field photocurrent microscopy, an imaging resolution of 390nm has been demonstrated.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Huang, X. Duan, Q. Wei, and C. M. Lieber, Science 291, 630 (2001).
    [CrossRef] [PubMed]
  2. O. Hayden, R. Agarwal, and C. M. Lieber, Nature Mater. 5, 352 (2006).
    [CrossRef]
  3. C. Yang, C. J. Barrelet, F. Capasso, and C. M. Lieber, Nano Lett. 6, 2929 (2006).
    [CrossRef] [PubMed]
  4. S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, Nature Mater. 2, 229 (2003).
    [CrossRef]
  5. K. Kim, B. Liu, Y. Huang, and S. T. Ho, Opt. Quantum Electron. 40, 343 (2008).
    [CrossRef]
  6. Y. Huang and S. T. Ho, Opt. Express 14, 3569 (2006).
    [CrossRef] [PubMed]
  7. B. Liu, Y. Huang, G. Xu, and S. T. Ho, Nanotechnology 19, 155303 (2008).
    [CrossRef] [PubMed]
  8. B. Liu and S. T. Ho, J. Electrochem. Soc. 155, 57 (2008).
    [CrossRef]

2008 (3)

K. Kim, B. Liu, Y. Huang, and S. T. Ho, Opt. Quantum Electron. 40, 343 (2008).
[CrossRef]

B. Liu, Y. Huang, G. Xu, and S. T. Ho, Nanotechnology 19, 155303 (2008).
[CrossRef] [PubMed]

B. Liu and S. T. Ho, J. Electrochem. Soc. 155, 57 (2008).
[CrossRef]

2006 (3)

Y. Huang and S. T. Ho, Opt. Express 14, 3569 (2006).
[CrossRef] [PubMed]

O. Hayden, R. Agarwal, and C. M. Lieber, Nature Mater. 5, 352 (2006).
[CrossRef]

C. Yang, C. J. Barrelet, F. Capasso, and C. M. Lieber, Nano Lett. 6, 2929 (2006).
[CrossRef] [PubMed]

2003 (1)

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, Nature Mater. 2, 229 (2003).
[CrossRef]

2001 (1)

Y. Huang, X. Duan, Q. Wei, and C. M. Lieber, Science 291, 630 (2001).
[CrossRef] [PubMed]

Agarwal, R.

O. Hayden, R. Agarwal, and C. M. Lieber, Nature Mater. 5, 352 (2006).
[CrossRef]

Atwater, H. A.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, Nature Mater. 2, 229 (2003).
[CrossRef]

Barrelet, C. J.

C. Yang, C. J. Barrelet, F. Capasso, and C. M. Lieber, Nano Lett. 6, 2929 (2006).
[CrossRef] [PubMed]

Capasso, F.

C. Yang, C. J. Barrelet, F. Capasso, and C. M. Lieber, Nano Lett. 6, 2929 (2006).
[CrossRef] [PubMed]

Duan, X.

Y. Huang, X. Duan, Q. Wei, and C. M. Lieber, Science 291, 630 (2001).
[CrossRef] [PubMed]

Harel, E.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, Nature Mater. 2, 229 (2003).
[CrossRef]

Hayden, O.

O. Hayden, R. Agarwal, and C. M. Lieber, Nature Mater. 5, 352 (2006).
[CrossRef]

Ho, S. T.

K. Kim, B. Liu, Y. Huang, and S. T. Ho, Opt. Quantum Electron. 40, 343 (2008).
[CrossRef]

B. Liu, Y. Huang, G. Xu, and S. T. Ho, Nanotechnology 19, 155303 (2008).
[CrossRef] [PubMed]

B. Liu and S. T. Ho, J. Electrochem. Soc. 155, 57 (2008).
[CrossRef]

Y. Huang and S. T. Ho, Opt. Express 14, 3569 (2006).
[CrossRef] [PubMed]

Huang, Y.

B. Liu, Y. Huang, G. Xu, and S. T. Ho, Nanotechnology 19, 155303 (2008).
[CrossRef] [PubMed]

K. Kim, B. Liu, Y. Huang, and S. T. Ho, Opt. Quantum Electron. 40, 343 (2008).
[CrossRef]

Y. Huang and S. T. Ho, Opt. Express 14, 3569 (2006).
[CrossRef] [PubMed]

Y. Huang, X. Duan, Q. Wei, and C. M. Lieber, Science 291, 630 (2001).
[CrossRef] [PubMed]

Kik, P. G.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, Nature Mater. 2, 229 (2003).
[CrossRef]

Kim, K.

K. Kim, B. Liu, Y. Huang, and S. T. Ho, Opt. Quantum Electron. 40, 343 (2008).
[CrossRef]

Koel, B. E.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, Nature Mater. 2, 229 (2003).
[CrossRef]

Lieber, C. M.

O. Hayden, R. Agarwal, and C. M. Lieber, Nature Mater. 5, 352 (2006).
[CrossRef]

C. Yang, C. J. Barrelet, F. Capasso, and C. M. Lieber, Nano Lett. 6, 2929 (2006).
[CrossRef] [PubMed]

Y. Huang, X. Duan, Q. Wei, and C. M. Lieber, Science 291, 630 (2001).
[CrossRef] [PubMed]

Liu, B.

K. Kim, B. Liu, Y. Huang, and S. T. Ho, Opt. Quantum Electron. 40, 343 (2008).
[CrossRef]

B. Liu, Y. Huang, G. Xu, and S. T. Ho, Nanotechnology 19, 155303 (2008).
[CrossRef] [PubMed]

B. Liu and S. T. Ho, J. Electrochem. Soc. 155, 57 (2008).
[CrossRef]

Maier, S. A.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, Nature Mater. 2, 229 (2003).
[CrossRef]

Meltzer, S.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, Nature Mater. 2, 229 (2003).
[CrossRef]

Requicha, A. A. G.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, Nature Mater. 2, 229 (2003).
[CrossRef]

Wei, Q.

Y. Huang, X. Duan, Q. Wei, and C. M. Lieber, Science 291, 630 (2001).
[CrossRef] [PubMed]

Xu, G.

B. Liu, Y. Huang, G. Xu, and S. T. Ho, Nanotechnology 19, 155303 (2008).
[CrossRef] [PubMed]

Yang, C.

C. Yang, C. J. Barrelet, F. Capasso, and C. M. Lieber, Nano Lett. 6, 2929 (2006).
[CrossRef] [PubMed]

J. Electrochem. Soc. (1)

B. Liu and S. T. Ho, J. Electrochem. Soc. 155, 57 (2008).
[CrossRef]

Nano Lett. (1)

C. Yang, C. J. Barrelet, F. Capasso, and C. M. Lieber, Nano Lett. 6, 2929 (2006).
[CrossRef] [PubMed]

Nanotechnology (1)

B. Liu, Y. Huang, G. Xu, and S. T. Ho, Nanotechnology 19, 155303 (2008).
[CrossRef] [PubMed]

Nature Mater. (2)

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, Nature Mater. 2, 229 (2003).
[CrossRef]

O. Hayden, R. Agarwal, and C. M. Lieber, Nature Mater. 5, 352 (2006).
[CrossRef]

Opt. Express (1)

Opt. Quantum Electron. (1)

K. Kim, B. Liu, Y. Huang, and S. T. Ho, Opt. Quantum Electron. 40, 343 (2008).
[CrossRef]

Science (1)

Y. Huang, X. Duan, Q. Wei, and C. M. Lieber, Science 291, 630 (2001).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

3D Schematic of the channelized NPD array, where the top electrode stripes are in the crossing direction to the bottom ones, forming a matrix for pixel addressing.

Fig. 2
Fig. 2

(a) FDTD simulation scheme to study the imaging performance of the NPD array; (b) snapshot of photocurrent map generated in NPD pixels for the simulation case having the imaging resolution of 150 nm for 1.55 μ m wavelength light; (c) corresponding normalized optical energy in each NPD pixel.

Fig. 3
Fig. 3

(a) Top view of 2 × 2 and 4 × 4 NPD arrays; (b) SEM picture of the central detection region for a 2 × 2 NPD array, where the pixel is 300 nm wide with 300 nm spacing.

Fig. 4
Fig. 4

Dark current of one 2 × 2 NPD array pixel versus reverse bias. The pixel is 200 nm wide with 200 nm spacing. Inset, dark current of the NPD pixel versus bias, both forward and reverse region.

Fig. 5
Fig. 5

Photocurrent of one 2 × 2 NPD pixel versus reverse bias. The pixel is 200 nm wide with 200 nm spacing. Inset, calculated responsivity of the NPD pixel at different bias.

Fig. 6
Fig. 6

(a) Schematic of an NSPM measurement of NPD device to characterize the nanoimaging performance by the NPD array. The NPD pixel at the crossing point of biased electrodes is the one to detect signal. (b) 2D photocurrent map generated by NPD pixel using a homemade NSPM system, where the bright spot is the position of the biased NPD pixel and has a FWHM diameter of 390 nm .

Metrics