Abstract

We demonstrate a technique for differential coherent anti-Stokes Raman scattering (CARS) microscopy employing linearly chirped femtosecond laser pulses. By replicating the exciting pump-Stokes pulse pairs to create a pulse train at twice the laser repetition rate, and controlling the instantaneous frequency difference of each pair by glass dispersion, we can adjust the Raman frequency probed by each pair in an intrinsically stable and cost-effective way. The resulting CARS intensities are detected by a single photomultiplier as sum and difference using phase-sensitive frequency filtering. We demonstrate imaging of polymer beads and living cells with suppressed nonresonant CARS background and improved chemical sensitivity.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Muller and A. Zumbusch, ChemPhysChem 8, 2156 (2007).
    [CrossRef] [PubMed]
  2. F. Ganikhanov, C. L. Evans, B. G. Saar, and X. S. Xie, Opt. Lett. 31, 1872 (2006).
    [CrossRef] [PubMed]
  3. O. Burkacky, A. Zumbusch, C. Brackmann, and A. Enejder, Opt. Lett. 31, 3656 (2006).
    [CrossRef] [PubMed]
  4. Y. S. Yoo, D.-H. Lee, and H. Cho, Opt. Lett. 32, 3254 (2007).
    [CrossRef] [PubMed]
  5. I. Rocha-Mendoza, W. Langbein, and P. Borri, Appl. Phys. Lett. 93, 201103 (2008).
    [CrossRef]
  6. W. Langbein, I. Rocha-Mendoza, and P. Borri, “Coherent anti-Stokes Raman microscopy using spectral focusing: theory and experiment,” J. Raman Spectrosc. (to be published).
  7. T. Hellerer, A. M. Enejder, and A. Zumbusch, Appl. Phys. Lett. 85, 25 (2004).
    [CrossRef]
  8. D. Gachet, F. Billard, N. Sandeau, and H. Rigneault, Opt. Express 15, 10408 (2007).
    [CrossRef] [PubMed]

2008

I. Rocha-Mendoza, W. Langbein, and P. Borri, Appl. Phys. Lett. 93, 201103 (2008).
[CrossRef]

2007

2006

2004

T. Hellerer, A. M. Enejder, and A. Zumbusch, Appl. Phys. Lett. 85, 25 (2004).
[CrossRef]

Billard, F.

Borri, P.

I. Rocha-Mendoza, W. Langbein, and P. Borri, Appl. Phys. Lett. 93, 201103 (2008).
[CrossRef]

W. Langbein, I. Rocha-Mendoza, and P. Borri, “Coherent anti-Stokes Raman microscopy using spectral focusing: theory and experiment,” J. Raman Spectrosc. (to be published).

Brackmann, C.

Burkacky, O.

Cho, H.

Enejder, A.

Enejder, A. M.

T. Hellerer, A. M. Enejder, and A. Zumbusch, Appl. Phys. Lett. 85, 25 (2004).
[CrossRef]

Evans, C. L.

Gachet, D.

Ganikhanov, F.

Hellerer, T.

T. Hellerer, A. M. Enejder, and A. Zumbusch, Appl. Phys. Lett. 85, 25 (2004).
[CrossRef]

Langbein, W.

I. Rocha-Mendoza, W. Langbein, and P. Borri, Appl. Phys. Lett. 93, 201103 (2008).
[CrossRef]

W. Langbein, I. Rocha-Mendoza, and P. Borri, “Coherent anti-Stokes Raman microscopy using spectral focusing: theory and experiment,” J. Raman Spectrosc. (to be published).

Lee, D.-H.

Muller, M.

M. Muller and A. Zumbusch, ChemPhysChem 8, 2156 (2007).
[CrossRef] [PubMed]

Rigneault, H.

Rocha-Mendoza, I.

I. Rocha-Mendoza, W. Langbein, and P. Borri, Appl. Phys. Lett. 93, 201103 (2008).
[CrossRef]

W. Langbein, I. Rocha-Mendoza, and P. Borri, “Coherent anti-Stokes Raman microscopy using spectral focusing: theory and experiment,” J. Raman Spectrosc. (to be published).

Saar, B. G.

Sandeau, N.

Xie, X. S.

Yoo, Y. S.

Zumbusch, A.

M. Muller and A. Zumbusch, ChemPhysChem 8, 2156 (2007).
[CrossRef] [PubMed]

O. Burkacky, A. Zumbusch, C. Brackmann, and A. Enejder, Opt. Lett. 31, 3656 (2006).
[CrossRef] [PubMed]

T. Hellerer, A. M. Enejder, and A. Zumbusch, Appl. Phys. Lett. 85, 25 (2004).
[CrossRef]

Appl. Phys. Lett.

I. Rocha-Mendoza, W. Langbein, and P. Borri, Appl. Phys. Lett. 93, 201103 (2008).
[CrossRef]

T. Hellerer, A. M. Enejder, and A. Zumbusch, Appl. Phys. Lett. 85, 25 (2004).
[CrossRef]

ChemPhysChem

M. Muller and A. Zumbusch, ChemPhysChem 8, 2156 (2007).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Other

W. Langbein, I. Rocha-Mendoza, and P. Borri, “Coherent anti-Stokes Raman microscopy using spectral focusing: theory and experiment,” J. Raman Spectrosc. (to be published).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Optical layout of the pulse replication unit. ω S , P , Stokes and pump central frequencies, λ 2 , half-wave plate; PBS, polarizing beam splitter, M, mirrors, SF57, glass block. Bottom right, sketch of spectral focusing and D-CARS.

Fig. 2
Fig. 2

D-CARS on PS beads. (a) Nonresonant CARS from agar (dotted data), and ratio between CARS from PS and agar, as function of pump-Stokes delay and corresponding IFD. IFDs used for D-CARS are indicated by the bar. (b) Cross sections along x through the 3 μ m bead center. (c), (d) In-plane ( x y ) and depth ( x z ) images on a logarithmic gray scale over 2 orders of magnitude. (c) CARS at IFD 2 , (d) D-CARS. 0.2 ms pixel . (e) Sum and D-CARS images and cross sections of a 200 nm bead, 0.6 ms pixel . Total excitation power, 10 mW .

Fig. 3
Fig. 3

D-CARS on PS and PMMA beads. x y images on a linear gray scale for (a) IFD 1 , 2 and (b) IFD 1 , 2 as shown in (d). 400 × 400   pixels , 0.2 ms pixel . (c) x-intensity profiles of (a) and (b), taken at the indicated lines. (d) CARS spectrum of PS (black curve) and PMMA (gray curve).

Fig. 4
Fig. 4

D-CARS x y images from living HeLa cells on linear gray scales for IFD 1 , 2 as shown in (d). (a) Sum CARS. (b) D-CARS. (c) Linear combination of sum CARS and D-CARS (see text). 301 × 301   pixels , 0.2 ms pixel , 10 mW total excitation power. (d) CARS spectrum of the LD indicated by the arrow in (a).

Metrics