Abstract

We demonstrate a form of scanning microscopy using a short-focal-length Fresnel zone plate and a low-NA relay telescope. Owing to a focal length of only 5μm, the zone plate produces large wavefront tilt and consequently severe vignetting for off-axis illumination. By scanning an optically trapped fluorescent sphere, we measure the vignetted collection region of the zone-plate imaging system. The fluorescence collection efficiency is sharply peaked and has a lateral width of 550nm, which agrees with numerical simulations.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Betzig and J. K. Trautman, Science 257, 189 (1992).
    [CrossRef] [PubMed]
  2. W. J. Denk, D. W. Piston, and W. W. Webb, Handbook of Biological Confocal Microscopy, J.B.Pawley, ed. (Plenum, 1995).
  3. D. Gil, R. Menon, and H. I. Smith, J. Vac. Sci. Technol. B 21, 2956 (2003).
    [CrossRef]
  4. R. Brunner, M. Burkhardt, A. Pesch, O. Sandfuchs, M. Ferstl, S. Hohng, and J. O. White, J. Opt. Soc. Am. A 21, 1186 (2004).
    [CrossRef]
  5. E. Schonbrun and K. B. Crozier, Opt. Lett. 33, 2017 (2008).
    [CrossRef] [PubMed]
  6. D. L. Dickensheets and G. S. Kino, Opt. Lett. 21, 764 (1996).
    [CrossRef] [PubMed]
  7. H. J. Tiziani, R. Achi, R. N. Kramer, and L. Wiegers, Appl. Opt. 35, 120 (1996).
    [CrossRef] [PubMed]
  8. D. Gil, R. Menon, D. J. D. Carter, and H. I. Smith, J. Vac. Sci. Technol. B 18, 2881 (2000).
    [CrossRef]
  9. X. Heng, D. Erickson, L. R. Baugh, Z. Yaqoob, P. W. Sternberg, D. Psaltis, and C. Yang, Lab Chip 6, 1274 (2006).
    [CrossRef] [PubMed]
  10. P. M. Lundquist, C. F. Zhong, P. Zhao, A. B. Tomaney, P. S. Peluso, J. Dixon, B. Bettman, Y. Lacroix, D. P. Kwo, E. McCullough, M. Maxham, K. Hester, P. McNitt, D. M. Grey, C. Henriquez, M. Foquet, S. W. Turner, and D. Zaccarin, Opt. Lett. 33, 1026 (2008).
    [CrossRef] [PubMed]
  11. T. D. Visser, G. J. Brakenhoff, and F. C. A. Groen, Optik 87, 39 (1991).
  12. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1996).
  13. N. Davidson and N. Bokor, Opt. Lett. 29, 1318 (2004).
    [CrossRef] [PubMed]

2008

2006

X. Heng, D. Erickson, L. R. Baugh, Z. Yaqoob, P. W. Sternberg, D. Psaltis, and C. Yang, Lab Chip 6, 1274 (2006).
[CrossRef] [PubMed]

2004

2003

D. Gil, R. Menon, and H. I. Smith, J. Vac. Sci. Technol. B 21, 2956 (2003).
[CrossRef]

2000

D. Gil, R. Menon, D. J. D. Carter, and H. I. Smith, J. Vac. Sci. Technol. B 18, 2881 (2000).
[CrossRef]

1996

1992

E. Betzig and J. K. Trautman, Science 257, 189 (1992).
[CrossRef] [PubMed]

1991

T. D. Visser, G. J. Brakenhoff, and F. C. A. Groen, Optik 87, 39 (1991).

Achi, R.

Baugh, L. R.

X. Heng, D. Erickson, L. R. Baugh, Z. Yaqoob, P. W. Sternberg, D. Psaltis, and C. Yang, Lab Chip 6, 1274 (2006).
[CrossRef] [PubMed]

Bettman, B.

Betzig, E.

E. Betzig and J. K. Trautman, Science 257, 189 (1992).
[CrossRef] [PubMed]

Bokor, N.

Brakenhoff, G. J.

T. D. Visser, G. J. Brakenhoff, and F. C. A. Groen, Optik 87, 39 (1991).

Brunner, R.

Burkhardt, M.

Carter, D. J. D.

D. Gil, R. Menon, D. J. D. Carter, and H. I. Smith, J. Vac. Sci. Technol. B 18, 2881 (2000).
[CrossRef]

Crozier, K. B.

Davidson, N.

Denk, W. J.

W. J. Denk, D. W. Piston, and W. W. Webb, Handbook of Biological Confocal Microscopy, J.B.Pawley, ed. (Plenum, 1995).

Dickensheets, D. L.

Dixon, J.

Erickson, D.

X. Heng, D. Erickson, L. R. Baugh, Z. Yaqoob, P. W. Sternberg, D. Psaltis, and C. Yang, Lab Chip 6, 1274 (2006).
[CrossRef] [PubMed]

Ferstl, M.

Foquet, M.

Gil, D.

D. Gil, R. Menon, and H. I. Smith, J. Vac. Sci. Technol. B 21, 2956 (2003).
[CrossRef]

D. Gil, R. Menon, D. J. D. Carter, and H. I. Smith, J. Vac. Sci. Technol. B 18, 2881 (2000).
[CrossRef]

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1996).

Grey, D. M.

Groen, F. C. A.

T. D. Visser, G. J. Brakenhoff, and F. C. A. Groen, Optik 87, 39 (1991).

Heng, X.

X. Heng, D. Erickson, L. R. Baugh, Z. Yaqoob, P. W. Sternberg, D. Psaltis, and C. Yang, Lab Chip 6, 1274 (2006).
[CrossRef] [PubMed]

Henriquez, C.

Hester, K.

Hohng, S.

Kino, G. S.

Kramer, R. N.

Kwo, D. P.

Lacroix, Y.

Lundquist, P. M.

Maxham, M.

McCullough, E.

McNitt, P.

Menon, R.

D. Gil, R. Menon, and H. I. Smith, J. Vac. Sci. Technol. B 21, 2956 (2003).
[CrossRef]

D. Gil, R. Menon, D. J. D. Carter, and H. I. Smith, J. Vac. Sci. Technol. B 18, 2881 (2000).
[CrossRef]

Peluso, P. S.

Pesch, A.

Piston, D. W.

W. J. Denk, D. W. Piston, and W. W. Webb, Handbook of Biological Confocal Microscopy, J.B.Pawley, ed. (Plenum, 1995).

Psaltis, D.

X. Heng, D. Erickson, L. R. Baugh, Z. Yaqoob, P. W. Sternberg, D. Psaltis, and C. Yang, Lab Chip 6, 1274 (2006).
[CrossRef] [PubMed]

Sandfuchs, O.

Schonbrun, E.

Smith, H. I.

D. Gil, R. Menon, and H. I. Smith, J. Vac. Sci. Technol. B 21, 2956 (2003).
[CrossRef]

D. Gil, R. Menon, D. J. D. Carter, and H. I. Smith, J. Vac. Sci. Technol. B 18, 2881 (2000).
[CrossRef]

Sternberg, P. W.

X. Heng, D. Erickson, L. R. Baugh, Z. Yaqoob, P. W. Sternberg, D. Psaltis, and C. Yang, Lab Chip 6, 1274 (2006).
[CrossRef] [PubMed]

Tiziani, H. J.

Tomaney, A. B.

Trautman, J. K.

E. Betzig and J. K. Trautman, Science 257, 189 (1992).
[CrossRef] [PubMed]

Turner, S. W.

Visser, T. D.

T. D. Visser, G. J. Brakenhoff, and F. C. A. Groen, Optik 87, 39 (1991).

Webb, W. W.

W. J. Denk, D. W. Piston, and W. W. Webb, Handbook of Biological Confocal Microscopy, J.B.Pawley, ed. (Plenum, 1995).

White, J. O.

Wiegers, L.

Yang, C.

X. Heng, D. Erickson, L. R. Baugh, Z. Yaqoob, P. W. Sternberg, D. Psaltis, and C. Yang, Lab Chip 6, 1274 (2006).
[CrossRef] [PubMed]

Yaqoob, Z.

X. Heng, D. Erickson, L. R. Baugh, Z. Yaqoob, P. W. Sternberg, D. Psaltis, and C. Yang, Lab Chip 6, 1274 (2006).
[CrossRef] [PubMed]

Zaccarin, D.

Zhao, P.

Zhong, C. F.

Appl. Opt.

J. Opt. Soc. Am. A

J. Vac. Sci. Technol. B

D. Gil, R. Menon, and H. I. Smith, J. Vac. Sci. Technol. B 21, 2956 (2003).
[CrossRef]

D. Gil, R. Menon, D. J. D. Carter, and H. I. Smith, J. Vac. Sci. Technol. B 18, 2881 (2000).
[CrossRef]

Lab Chip

X. Heng, D. Erickson, L. R. Baugh, Z. Yaqoob, P. W. Sternberg, D. Psaltis, and C. Yang, Lab Chip 6, 1274 (2006).
[CrossRef] [PubMed]

Opt. Lett.

Optik

T. D. Visser, G. J. Brakenhoff, and F. C. A. Groen, Optik 87, 39 (1991).

Science

E. Betzig and J. K. Trautman, Science 257, 189 (1992).
[CrossRef] [PubMed]

Other

W. J. Denk, D. W. Piston, and W. W. Webb, Handbook of Biological Confocal Microscopy, J.B.Pawley, ed. (Plenum, 1995).

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Diagram of the scanning zone-plate imaging system. A point source at an axial distance f, the focal length, illuminates the zone plate. The point source is a transverse distance of Δ r from the optical axis, which is shown as a dashed line. A relay lens collects light emerging from the zone plate up to an angle θ t .

Fig. 2
Fig. 2

Scanning electron micrograph of the silicon zone plate before coating with the SU8 immersion film.

Fig. 3
Fig. 3

Fourier beam propagation simulations of a 5 μ m focal length ( f ) zone plate. A, Collection efficiency as a function of transverse position for the zone plate and relay lens optical system. B and C, Amplitude and phase, respectively, of the field directly behind the zone plate when the point source is 0.5 μ m from the optical axis.

Fig. 4
Fig. 4

Schematic of the experiment. Polystyrene spheres are trapped in a fluid chamber and scanned across the field of view of the zone plate. Fluorescence collected by the zone plate is imaged through the quartz substrate by relay optics and through a fluorescence emission filter onto a camera.

Fig. 5
Fig. 5

Collected fluorescent signal versus position for sphere scanning experiments. A, B, and C show the scanning of 0.5, 1.1, and 2.0 μ m diameter fluorescent spheres, respectively. Raw, unfiltered data is presented. Data are normalized to have a maximum of unity, and background subtraction has been carried out.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

H ( r ) = 1 + exp ( j k n r 2 + f 2 ) 2 = 2 + exp ( j k n r 2 + f 2 ) + exp ( j k n r 2 + f 2 ) ,
U = H × S = [ 2 + exp ( j k n r 2 + f 2 ) + exp ( j k n r 2 + f 2 ) ] × A 0 r 2 + f 2 exp ( j k n r 2 + f 2 ) = A 0 r 2 + f 2 + ,

Metrics