Abstract

A simple integrated Young interferometer sensor was prepared on a glass substrate with a pair of single-mode straight channel waveguides 75μm apart. A tapered thin film of TiO2 was locally deposited on one channel to form a composite waveguide sensing arm with a greatly enhanced evanescent field. With the prism-coupling method a single beam of laser light was simultaneously launched into the two channels to yield a high-contrast interference pattern. Refractive-index sensitivity of the interferometer and its response to protein adsorption were investigated by using a slit-photodetector assembly to interrogate the sensor signal. The factors affecting the fringe contrast were analyzed.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S.-H. Hsu and Y.-T. Huang, Opt. Lett. 30, 2897 (2005).
    [CrossRef] [PubMed]
  2. M. J. Swann, L. L. Peel, S. Carrington, and N. J. Freeman, Anal. Biochem. 329, 190 (2004).
    [CrossRef] [PubMed]
  3. K. Schmitt, B. Schirmer, C. Hoffmann, A. Brandenburg, and P. Meyrueis, Biosens. Bioelectron. 22, 2591 (2007).
    [CrossRef]
  4. A. Ymeti, J. S. Kanger, J. Greve, P. V. Lambeck, R. Wijn, and R. G. Heideman, Appl. Opt. 42, 5649 (2003).
    [CrossRef] [PubMed]
  5. A. Brandenburg and R. Henninger, Appl. Opt. 33, 5941 (1994).
    [CrossRef] [PubMed]
  6. Z.-M. Qi, K. Itoh, M. Murabayashi, and C. R. Lavers, Opt. Lett. 25, 1427 (2000).
    [CrossRef]
  7. N. Kinrot and M. Nathan, J. Lightwave Technol. 24, 2139 (2006).
    [CrossRef]
  8. B. D. Fair and A. M. Jamieson, J. Colloid Interface Sci. 77, 525 (1980).
    [CrossRef]

2007 (1)

K. Schmitt, B. Schirmer, C. Hoffmann, A. Brandenburg, and P. Meyrueis, Biosens. Bioelectron. 22, 2591 (2007).
[CrossRef]

2006 (1)

2005 (1)

2004 (1)

M. J. Swann, L. L. Peel, S. Carrington, and N. J. Freeman, Anal. Biochem. 329, 190 (2004).
[CrossRef] [PubMed]

2003 (1)

2000 (1)

1994 (1)

1980 (1)

B. D. Fair and A. M. Jamieson, J. Colloid Interface Sci. 77, 525 (1980).
[CrossRef]

Brandenburg, A.

K. Schmitt, B. Schirmer, C. Hoffmann, A. Brandenburg, and P. Meyrueis, Biosens. Bioelectron. 22, 2591 (2007).
[CrossRef]

A. Brandenburg and R. Henninger, Appl. Opt. 33, 5941 (1994).
[CrossRef] [PubMed]

Carrington, S.

M. J. Swann, L. L. Peel, S. Carrington, and N. J. Freeman, Anal. Biochem. 329, 190 (2004).
[CrossRef] [PubMed]

Fair, B. D.

B. D. Fair and A. M. Jamieson, J. Colloid Interface Sci. 77, 525 (1980).
[CrossRef]

Freeman, N. J.

M. J. Swann, L. L. Peel, S. Carrington, and N. J. Freeman, Anal. Biochem. 329, 190 (2004).
[CrossRef] [PubMed]

Greve, J.

Heideman, R. G.

Henninger, R.

Hoffmann, C.

K. Schmitt, B. Schirmer, C. Hoffmann, A. Brandenburg, and P. Meyrueis, Biosens. Bioelectron. 22, 2591 (2007).
[CrossRef]

Hsu, S. -H.

Huang, Y. -T.

Itoh, K.

Jamieson, A. M.

B. D. Fair and A. M. Jamieson, J. Colloid Interface Sci. 77, 525 (1980).
[CrossRef]

Kanger, J. S.

Kinrot, N.

Lambeck, P. V.

Lavers, C. R.

Meyrueis, P.

K. Schmitt, B. Schirmer, C. Hoffmann, A. Brandenburg, and P. Meyrueis, Biosens. Bioelectron. 22, 2591 (2007).
[CrossRef]

Murabayashi, M.

Nathan, M.

Peel, L. L.

M. J. Swann, L. L. Peel, S. Carrington, and N. J. Freeman, Anal. Biochem. 329, 190 (2004).
[CrossRef] [PubMed]

Qi, Z. -M.

Schirmer, B.

K. Schmitt, B. Schirmer, C. Hoffmann, A. Brandenburg, and P. Meyrueis, Biosens. Bioelectron. 22, 2591 (2007).
[CrossRef]

Schmitt, K.

K. Schmitt, B. Schirmer, C. Hoffmann, A. Brandenburg, and P. Meyrueis, Biosens. Bioelectron. 22, 2591 (2007).
[CrossRef]

Swann, M. J.

M. J. Swann, L. L. Peel, S. Carrington, and N. J. Freeman, Anal. Biochem. 329, 190 (2004).
[CrossRef] [PubMed]

Wijn, R.

Ymeti, A.

Anal. Biochem. (1)

M. J. Swann, L. L. Peel, S. Carrington, and N. J. Freeman, Anal. Biochem. 329, 190 (2004).
[CrossRef] [PubMed]

Appl. Opt. (2)

Biosens. Bioelectron. (1)

K. Schmitt, B. Schirmer, C. Hoffmann, A. Brandenburg, and P. Meyrueis, Biosens. Bioelectron. 22, 2591 (2007).
[CrossRef]

J. Colloid Interface Sci. (1)

B. D. Fair and A. M. Jamieson, J. Colloid Interface Sci. 77, 525 (1980).
[CrossRef]

J. Lightwave Technol. (1)

Opt. Lett. (2)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) IO Young interferometer with prism couplers, (b) channel-planar composite waveguide, (c) optical microscope image of glass channel waveguides, and (d) spatial interference pattern taken with a digital camera.

Fig. 2
Fig. 2

Simulated Mach–Zehnder and Young interference patterns (Young interference patterns were simulated with λ = 0.633 μ m , x 0 = 0 , d = 75 μ m , D = 95   mm , a = 200 μ m , and 500 μ m ).

Fig. 3
Fig. 3

(a) TE modal index of the composite waveguide calculated as a function of n C at different TiO 2 film thicknesses; (b) Δ N S Δ N R versus n C [here Δ N S = N S ( n C ) N S ( n C = 1.333 ) , Δ N R = N R ( n C ) N R ( n C = 1.333 ) ].

Fig. 4
Fig. 4

Phase-difference change versus refractive index of NaCl solution. Inset shows the interference pattern observed with a 500 μ m slit during the water−NaCl solution exchange.

Fig. 5
Fig. 5

Response of the interferometer to BSA adsorption measured with a 200 μ m slit.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

P = 2 P 0 a x 0 x 0 + a [ 1 + cos ( Δ ϕ + ϕ 0 + 2 π d λ D x ) ] d x = 2 P 0 [ 1 + λ D π d a sin ( π d a λ D ) cos ( Δ ϕ + ϕ 0 + 2 π d λ D x 0 + π d a λ D ) ] ,
γ = P max P min P + max P min = λ D π d a | sin ( π d a λ D ) | ,
Δ ϕ = 2 π λ 0 l ( Δ N S Δ N R ) d l ,
Δ ϕ = 2 π λ 0 l ( a n C 2 + b n C + c ) d l = A n C 2 + B n C + C ;

Metrics