Abstract

We present what we believe to be a new method of swept-source digital holography using a superluminescent diode (SLD) as a broadband light source and an acousto-optic tunable filter (AOTF) as a frequency tunable device. The swept source consists of an SLD as a broadband source in conjunction with the AOTF as the frequency tuning device in the wavelength range of 800–870 nm. Since the AOTF is an electronically controlled device, frequency tuning can be achieved without mechanical movement . The angular spectrum approach to the scalar diffraction theory is used to reconstruct the images for each wavelength. Applications of a broadband source ensure an increased axial resolution of reconstructed images. The proposed swept-source system provides a sufficiently broad range of tunability and can increase the axial range and the resolution of reconstructed tomographic images using digital holography. The system was tested using a semireflecting glass substrate; a character “B” is written on it with black ink. Experimental results are presented.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. H. Carter, J. Opt. Soc. Am. 60, 306 (1970).
    [CrossRef]
  2. M. K. Kim, Opt. Express 7, 305 (2000).
    [CrossRef] [PubMed]
  3. V. J. Srinivasan, R. Huber, I. Gorczynska, J. G. Fujimoto, J. Y. Jiang, P. Reisen, and A. E. Cable, Opt. Lett. 32, 361 (2007).
    [CrossRef] [PubMed]
  4. F. Montfort, T. Colomb, F. Charrière, J. Kühn, P. Marquet, E. Cuche, S. Herminjard, and C. Depeursinge, Appl. Opt. 45, 8209 (2006).
    [CrossRef] [PubMed]
  5. L. Yu and M. K. Kim, Opt. Lett. 30, 2092 (2005).
    [CrossRef] [PubMed]
  6. S. K. Dubey, T. Anna, D. S. Mehta, and C. Shakher, Appl. Phys. Lett. 91, 181106 (2007).
    [CrossRef]
  7. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1996).

2007 (2)

2006 (1)

2005 (1)

2000 (1)

1996 (1)

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1996).

1970 (1)

Anna, T.

S. K. Dubey, T. Anna, D. S. Mehta, and C. Shakher, Appl. Phys. Lett. 91, 181106 (2007).
[CrossRef]

Cable, A. E.

Carter, W. H.

Charrière, F.

Colomb, T.

Cuche, E.

Depeursinge, C.

Dubey, S. K.

S. K. Dubey, T. Anna, D. S. Mehta, and C. Shakher, Appl. Phys. Lett. 91, 181106 (2007).
[CrossRef]

Fujimoto, J. G.

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1996).

Gorczynska, I.

Herminjard, S.

Huber, R.

Jiang, J. Y.

Kim, M. K.

Kühn, J.

Marquet, P.

Mehta, D. S.

S. K. Dubey, T. Anna, D. S. Mehta, and C. Shakher, Appl. Phys. Lett. 91, 181106 (2007).
[CrossRef]

Montfort, F.

Reisen, P.

Shakher, C.

S. K. Dubey, T. Anna, D. S. Mehta, and C. Shakher, Appl. Phys. Lett. 91, 181106 (2007).
[CrossRef]

Srinivasan, V. J.

Yu, L.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Source characterizations: (a) spectral distribution of SLD, (b) tuned swept-source spectrum of SLD using AOTF, and (c) rf versus peak wavelength of a tuned spectrum of AOTF.

Fig. 2
Fig. 2

Schematic setup for a swept-source digital holographic system.

Fig. 3
Fig. 3

(a) Recorded hologram at a wavelength of 844.97 nm, (b) reconstructed intensity image at 0 μ m depth from the object surface, and (c) the corresponding phase distribution.

Fig. 4
Fig. 4

First row shows the reconstructed intensity distribution at various depths of 0 to 26 μ m for every 6.5 μ m change. The second row is the corresponding phase distribution at the focused surface.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

δ z 0 = l c 2 = 2   ln   2 π λ 0 2 Δ λ .

Metrics