Abstract

The imaging speed and quality of a Fourier-domain optical-coherence-tomography (FD-OCT) technique is largely limited by the resampling process. A time-domain interpolation approach based on zero padding is proposed that gets a close fall-off but much-reduced imaging time in FD-OCT data processing as compared with the common zero-padding interpolation method. The experimental results obtained with an FD-OCT system using a 2048 pixel line scan camera showed that the fall-off was improved by 2dB in deep z position and that the processing time was reduced to 468ms per 400 axial scan lines with a Pentium Dual E2140 computer; that is, a more than 95% reduction compared with the conventional zero-padding approach.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Z. Hu and A. M. Rollins, in Biomedical Optics, OSA Technical Digest (CD) (Optical Society of America, 2008), paper BMD78.
    [PubMed]
  2. R. Leitgeb, C. Hitzenberger, and A. Fercher, Opt. Express 11, 889 (2003).
    [CrossRef] [PubMed]
  3. R. Leitgeb, W. Drexler, A. Unterhuber, B. Hermann, T. Bajraszewski, T. Le, A. Stingl, and A. Fercher, Opt. Express 12, 2156 (2004).
    [CrossRef] [PubMed]
  4. C. Dorrer, N. Belabas, J. Likforman, and M. Joffre, J. Opt. Soc. Am. B 17, 1795 (2000).
    [CrossRef]
  5. B. Potsaid, I. Gorczynska, V. J. Srinivasan, Y. Chen, J. Jiang, A. Cable, and J. G. Fujimoto, Opt. Express 16, 15149 (2008).
    [CrossRef] [PubMed]
  6. C. J. Sansonetti, M. L. Salit, and J. Reader, Appl. Opt. 35, 74 (1996).
    [CrossRef] [PubMed]
  7. Z. Hu, Y. Pan, and A. M. Rollins, Appl. Opt. 46, 8499 (2007).
    [CrossRef] [PubMed]
  8. Z. Hu and A. M. Rollins, Opt. Lett. 32, 3525 (2007).
    [CrossRef] [PubMed]

2008

Z. Hu and A. M. Rollins, in Biomedical Optics, OSA Technical Digest (CD) (Optical Society of America, 2008), paper BMD78.
[PubMed]

B. Potsaid, I. Gorczynska, V. J. Srinivasan, Y. Chen, J. Jiang, A. Cable, and J. G. Fujimoto, Opt. Express 16, 15149 (2008).
[CrossRef] [PubMed]

2007

2004

2003

2000

1996

Bajraszewski, T.

Belabas, N.

Cable, A.

Chen, Y.

Dorrer, C.

Drexler, W.

Fercher, A.

Fujimoto, J. G.

Gorczynska, I.

Hermann, B.

Hitzenberger, C.

Hu, Z.

Z. Hu and A. M. Rollins, in Biomedical Optics, OSA Technical Digest (CD) (Optical Society of America, 2008), paper BMD78.
[PubMed]

Z. Hu, Y. Pan, and A. M. Rollins, Appl. Opt. 46, 8499 (2007).
[CrossRef] [PubMed]

Z. Hu and A. M. Rollins, Opt. Lett. 32, 3525 (2007).
[CrossRef] [PubMed]

Jiang, J.

Joffre, M.

Le, T.

Leitgeb, R.

Likforman, J.

Pan, Y.

Potsaid, B.

Reader, J.

Rollins, A. M.

Z. Hu and A. M. Rollins, in Biomedical Optics, OSA Technical Digest (CD) (Optical Society of America, 2008), paper BMD78.
[PubMed]

Z. Hu, Y. Pan, and A. M. Rollins, Appl. Opt. 46, 8499 (2007).
[CrossRef] [PubMed]

Z. Hu and A. M. Rollins, Opt. Lett. 32, 3525 (2007).
[CrossRef] [PubMed]

Salit, M. L.

Sansonetti, C. J.

Srinivasan, V. J.

Stingl, A.

Unterhuber, A.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Coefficient C ( Δ ) with N = 2048 for different positions s : (a) 100, (b) 1000, (c) 100.7, and (d) 1000.7. The abscissa is n, and n [ 0 , N 1 ] .

Fig. 2
Fig. 2

FD-OCT design experimental setup: SLD, superluminescent diode; PC, polarization controller; OI, optical isolator.

Fig. 3
Fig. 3

Fall-off of different interpolation methods. Points, experimental data; curves, corresponding cubic fits.

Fig. 4
Fig. 4

FD-OCT image obtained with different reconstruction methods: (a) zero padding, (b) proposed time-domain interpolation.

Tables (2)

Tables Icon

Table 1 Multiplications of Different Methods

Tables Icon

Table 2 Computation Time of Different Methods a

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

X 2 ( i ) = { X 1 ( i ) ,     0 i N 2 X 1 ( i M N + N ) ,         M N N 2 i M N 1 0 ,        others } .
x 2 ( s ) = 1 M N + 1 n = 0 N 1 x 1 ( n ) { 1 + 2 j = 1 N 2 cos 2 π N j ( s M n ) } .
x 2 ( s ) = 1 N + 1 n = 0 N 1 x 1 ( n ) { 1 + 2 j = 1 N 2 cos 2 π N j ( s n ) } .
C ( Δ ) = 1 N + 1 ( 1 + 2 j = 1 N 2 cos ( 2 π N j Δ ) ) ,
C ( Δ ) = 1 N + 1 ( 1 + 2 sin ( π 2 Δ ) cos ( π 2 Δ + π N Δ ) sin ( π N Δ ) ) ,
C ( Δ ) = 1 N + 1 ( 1 + sin ( π Δ ) cot ( π N Δ ) 2 sin 2 ( π 2 Δ ) ) .
Intensity = Contrast × ( 10 × log 10 ( x 2 ( s ) ) + Brightness ) + 255.

Metrics