Abstract

We propose a method of driving the vibrations of normal modes of a target molecule into coherence using stimulated Raman scattering. In concert many vibrations can produce a larger anti-Stokes signal than a single vibration. The same illumination does not drive other molecules to have coherent vibrations so that these molecules produce a weaker signal. We investigate how target and confounder molecules can be distinguished by pulses that drive many vibrations coherently, which has applications in coherent Raman microspectroscopy.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. D. Duncan, J. Reintjes, and T. J. Manuccia, Opt. Lett. 7, 350 (1982).
    [CrossRef] [PubMed]
  2. J.-X. Cheng, A. Volkmer, and X. S. Xie, J. Opt. Soc. Am. B 19, 1363 (2002).
    [CrossRef]
  3. D. L. Marks and S. A. Boppart, Phys. Rev. Lett. 92, 123905 (2004).
    [CrossRef] [PubMed]
  4. G. W. Jones, D. L. Marks, C. Vinegoni, and S. A. Boppart, Opt. Lett. 31, 1543 (2006).
    [CrossRef] [PubMed]
  5. D. L. Marks, C. Vinegoni, J. S. Bredfeldt, and S. A. Boppart, Appl. Phys. Lett. 85, 5787 (2004).
    [CrossRef]
  6. J. S. Bredfeldt, C. Vinegoni, D. L. Marks, and S. A. Boppart, Opt. Lett. 30, 495 (2005).
    [CrossRef] [PubMed]
  7. D. Oron, N. Dudovich, D. Yelin, and Y. Silberberg, Phys. Rev. Lett. 88, 063004 (2002).
    [CrossRef] [PubMed]
  8. D. Oron, N. Dudovich, D. Yelin, and Y. Silberberg, Phys. Rev. A 65, 043408 (2002).
    [CrossRef]
  9. R. E. Blahut, Theory of Remote Image Formation (Cambridge U. Press, 2004).
    [CrossRef]
  10. A. M. Weiner, Rev. Sci. Instrum. 71, 1929 (2000).
    [CrossRef]

2006 (1)

2005 (1)

2004 (3)

D. L. Marks, C. Vinegoni, J. S. Bredfeldt, and S. A. Boppart, Appl. Phys. Lett. 85, 5787 (2004).
[CrossRef]

D. L. Marks and S. A. Boppart, Phys. Rev. Lett. 92, 123905 (2004).
[CrossRef] [PubMed]

R. E. Blahut, Theory of Remote Image Formation (Cambridge U. Press, 2004).
[CrossRef]

2002 (3)

D. Oron, N. Dudovich, D. Yelin, and Y. Silberberg, Phys. Rev. Lett. 88, 063004 (2002).
[CrossRef] [PubMed]

D. Oron, N. Dudovich, D. Yelin, and Y. Silberberg, Phys. Rev. A 65, 043408 (2002).
[CrossRef]

J.-X. Cheng, A. Volkmer, and X. S. Xie, J. Opt. Soc. Am. B 19, 1363 (2002).
[CrossRef]

2000 (1)

A. M. Weiner, Rev. Sci. Instrum. 71, 1929 (2000).
[CrossRef]

1982 (1)

Blahut, R. E.

R. E. Blahut, Theory of Remote Image Formation (Cambridge U. Press, 2004).
[CrossRef]

Boppart, S. A.

G. W. Jones, D. L. Marks, C. Vinegoni, and S. A. Boppart, Opt. Lett. 31, 1543 (2006).
[CrossRef] [PubMed]

J. S. Bredfeldt, C. Vinegoni, D. L. Marks, and S. A. Boppart, Opt. Lett. 30, 495 (2005).
[CrossRef] [PubMed]

D. L. Marks and S. A. Boppart, Phys. Rev. Lett. 92, 123905 (2004).
[CrossRef] [PubMed]

D. L. Marks, C. Vinegoni, J. S. Bredfeldt, and S. A. Boppart, Appl. Phys. Lett. 85, 5787 (2004).
[CrossRef]

Bredfeldt, J. S.

J. S. Bredfeldt, C. Vinegoni, D. L. Marks, and S. A. Boppart, Opt. Lett. 30, 495 (2005).
[CrossRef] [PubMed]

D. L. Marks, C. Vinegoni, J. S. Bredfeldt, and S. A. Boppart, Appl. Phys. Lett. 85, 5787 (2004).
[CrossRef]

Cheng, J.-X.

Dudovich, N.

D. Oron, N. Dudovich, D. Yelin, and Y. Silberberg, Phys. Rev. A 65, 043408 (2002).
[CrossRef]

D. Oron, N. Dudovich, D. Yelin, and Y. Silberberg, Phys. Rev. Lett. 88, 063004 (2002).
[CrossRef] [PubMed]

Duncan, M. D.

Jones, G. W.

Manuccia, T. J.

Marks, D. L.

G. W. Jones, D. L. Marks, C. Vinegoni, and S. A. Boppart, Opt. Lett. 31, 1543 (2006).
[CrossRef] [PubMed]

J. S. Bredfeldt, C. Vinegoni, D. L. Marks, and S. A. Boppart, Opt. Lett. 30, 495 (2005).
[CrossRef] [PubMed]

D. L. Marks and S. A. Boppart, Phys. Rev. Lett. 92, 123905 (2004).
[CrossRef] [PubMed]

D. L. Marks, C. Vinegoni, J. S. Bredfeldt, and S. A. Boppart, Appl. Phys. Lett. 85, 5787 (2004).
[CrossRef]

Oron, D.

D. Oron, N. Dudovich, D. Yelin, and Y. Silberberg, Phys. Rev. Lett. 88, 063004 (2002).
[CrossRef] [PubMed]

D. Oron, N. Dudovich, D. Yelin, and Y. Silberberg, Phys. Rev. A 65, 043408 (2002).
[CrossRef]

Reintjes, J.

Silberberg, Y.

D. Oron, N. Dudovich, D. Yelin, and Y. Silberberg, Phys. Rev. Lett. 88, 063004 (2002).
[CrossRef] [PubMed]

D. Oron, N. Dudovich, D. Yelin, and Y. Silberberg, Phys. Rev. A 65, 043408 (2002).
[CrossRef]

Vinegoni, C.

Volkmer, A.

Weiner, A. M.

A. M. Weiner, Rev. Sci. Instrum. 71, 1929 (2000).
[CrossRef]

Xie, X. S.

Yelin, D.

D. Oron, N. Dudovich, D. Yelin, and Y. Silberberg, Phys. Rev. A 65, 043408 (2002).
[CrossRef]

D. Oron, N. Dudovich, D. Yelin, and Y. Silberberg, Phys. Rev. Lett. 88, 063004 (2002).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

D. L. Marks, C. Vinegoni, J. S. Bredfeldt, and S. A. Boppart, Appl. Phys. Lett. 85, 5787 (2004).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Lett. (3)

Phys. Rev. A (1)

D. Oron, N. Dudovich, D. Yelin, and Y. Silberberg, Phys. Rev. A 65, 043408 (2002).
[CrossRef]

Phys. Rev. Lett. (2)

D. L. Marks and S. A. Boppart, Phys. Rev. Lett. 92, 123905 (2004).
[CrossRef] [PubMed]

D. Oron, N. Dudovich, D. Yelin, and Y. Silberberg, Phys. Rev. Lett. 88, 063004 (2002).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (1)

A. M. Weiner, Rev. Sci. Instrum. 71, 1929 (2000).
[CrossRef]

Other (1)

R. E. Blahut, Theory of Remote Image Formation (Cambridge U. Press, 2004).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Schematic of a matched-filter Raman imaging instrument that implements the matched-filter Raman spectroscopy method.

Fig. 2
Fig. 2

Results of a simulation of matched pulse Raman excitation. (a) Spectrum of the shaped pulse. (b) Magnitude in the time domain of the shaped pulse. (c) Magnitude of the Raman spectrum of the molecule [solid black curve (blue online)] and the achieved spectrum (thin black curve) by the iterative method. (d) Amplitude of the induced total vibrational oscillation of each molecule. (e) Amplitude of the anti-Stokes signal from each molecule. (f) Amplitude of the cross correlation of the anti-Stokes signal of each molecule with the target molecule anti-Stokes signal. In (d)–(f), the upper curve (black) is of the target molecule, the lower curve (red online) for confounder A, and the middle curve (blue online) for confounder B.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

Q ̃ ( Ω ) = χ ̃ ( 3 ) ( Ω ) 0 E ̃ ( ω + Ω ) E ̃ ( ω ) * d ω ,
P ̃ ( 3 ) ( ω ) = 0 ω E ̃ ( ω Ω ) Q ̃ ( Ω ) d Ω .
Q ( t ) = d t E ( t t ) 2 χ ( 3 ) ( t ) .
W ( t ) = γ 2 w t w 2 t + w 2 d t χ ( 3 ) ( t ) 2 ,
A ( t ) = χ ( 3 ) ( t ) + W ( t ) ,
A ( t ) = A ( t ) for A ( t ) > 0 and t m t 0 ,
A ( t ) = 0 otherwise .
Δ I ( Δ t ) = 4 Re { 0 d ω R ̃ ( ω ) P ̃ ( 3 ) ( ω ) * exp ( i ω Δ t ) } .
ρ = d t χ C ( t ) χ T ( t ) d t χ T 2 ( t ) ,

Metrics