Abstract

A compact optofluidic refractometer is demonstrated. Consisting of a grating structure with rectangular grooves integrated into a microfluidic network, its working principle is based on the modulation of the zeroth-order diffraction intensity of the transmission induced by the refractive index (RI) of a sample fluid that fills the groove space. The performance of the device is dependent on the grating structure parameters such as thickness. Theoretical analysis and experimental measurements agree well with each other and both demonstrate that having a thicker grating results in higher sensitivity but a smaller measurement range, and vice versa. It can also be expected that smaller changes in the RI can be resolved by using a detector with a lower detection limit.

© 2009 Optical Society of America

Full Article  |  PDF Article
Related Articles
Integration of polymer waveguides for optical detection in microfabricated chemical analysis systems

Klaus B. Mogensen, Jamil El-Ali, Anders Wolff, and Jörg P. Kutter
Appl. Opt. 42(19) 4072-4079 (2003)

Evanescent field-based optical fiber sensing device for measuring the refractive index of liquids in microfluidic channels

Pavel Polynkin, Alexander Polynkin, N. Peyghambarian, and Masud Mansuripur
Opt. Lett. 30(11) 1273-1275 (2005)

Cavity-enhanced on-chip absorption spectroscopy using microring resonators

Arthur Nitkowski, Long Chen, and Michal Lipson
Opt. Express 16(16) 11930-11936 (2008)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription