Abstract

We present what we believe to be a novel approach to measuring optical path length differences with a precision of a few nanometers. The instrument is based on transverse scanning or en-face optical coherence tomography. Owing to the fast motion of the scanning beam over the sample, excellent phase stability in the transverse direction is achieved. Hence, phase changes caused by the varying optical path lengths within the sample arm occur with high frequency in the fast scanning direction. These changes are well separated from the rather slow phase changes introduced by jitter within the interferometer and can therefore be measured. The en-face imaging speed of the instrument is 40 fps (520×200  pixels). The measured precision of the method to detect small changes in optical path lengths was 3  nm.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Koyama, A. Iwasaki, M. Tanimoto, and I. Kudo, Rev. Sci. Instrum. 67, 2584 (1996).
    [CrossRef]
  2. A. Barty, K. A. Nugent, D. Paganin, and A. Roberts, Opt. Lett. 23, 817 (1998).
    [CrossRef]
  3. C. K. Hitzenberger and A. F. Fercher, Opt. Lett. 24, 622 (1999).
    [CrossRef]
  4. C. Yang, A. Wax, I. Georgakoudi, E. B. Hanlon, K. Badizadegan, R. R. Dasari, and M. S. Feld, Opt. Lett. 25, 1526 (2000).
    [CrossRef]
  5. C. Joo, T. Akkin, B. Cense, B. H. Park, and J. E. de Boer, Opt. Lett. 30, 2131 (2005).
    [CrossRef] [PubMed]
  6. M. A. Choma, A. K. Ellerbee, C. H. Yang, T. L. Creazzo, and J. A. Izatt, Opt. Lett. 30, 1162 (2005).
    [CrossRef] [PubMed]
  7. M. Pircher, B. Baumann, E. Goetzinger, H. Sattmann, and C. K. Hitzenberger, Opt. Express 15, 16922 (2007).
    [CrossRef] [PubMed]
  8. Y. H. Zhao, Z. P. Chen, C. Saxer, S. H. Xiang, J. F. de Boer, and J. S. Nelson, Opt. Lett. 25, 114 (2000).
    [CrossRef]

2007

2005

2000

1999

1998

1996

K. Koyama, A. Iwasaki, M. Tanimoto, and I. Kudo, Rev. Sci. Instrum. 67, 2584 (1996).
[CrossRef]

Akkin, T.

Badizadegan, K.

Barty, A.

Baumann, B.

Cense, B.

Chen, Z. P.

Choma, M. A.

Creazzo, T. L.

Dasari, R. R.

de Boer, J. E.

de Boer, J. F.

Ellerbee, A. K.

Feld, M. S.

Fercher, A. F.

Georgakoudi, I.

Goetzinger, E.

Hanlon, E. B.

Hitzenberger, C. K.

Iwasaki, A.

K. Koyama, A. Iwasaki, M. Tanimoto, and I. Kudo, Rev. Sci. Instrum. 67, 2584 (1996).
[CrossRef]

Izatt, J. A.

Joo, C.

Koyama, K.

K. Koyama, A. Iwasaki, M. Tanimoto, and I. Kudo, Rev. Sci. Instrum. 67, 2584 (1996).
[CrossRef]

Kudo, I.

K. Koyama, A. Iwasaki, M. Tanimoto, and I. Kudo, Rev. Sci. Instrum. 67, 2584 (1996).
[CrossRef]

Nelson, J. S.

Nugent, K. A.

Paganin, D.

Park, B. H.

Pircher, M.

Roberts, A.

Sattmann, H.

Saxer, C.

Tanimoto, M.

K. Koyama, A. Iwasaki, M. Tanimoto, and I. Kudo, Rev. Sci. Instrum. 67, 2584 (1996).
[CrossRef]

Wax, A.

Xiang, S. H.

Yang, C.

Yang, C. H.

Zhao, Y. H.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Scheme of the experiment. LS, light source ( λ = 840   nm , Δ λ = 50   nm ); AOM, acousto-optic modulator; DC, dispersion compensation; BS, beam splitter; L1–L6, lenses.

Fig. 2
Fig. 2

Different steps of the evaluation procedure. (a) Measured en-face phase map, (b) en-face phase map after subtracting the phase introduced by the AOMs, (c) en-face phase map after unwrapping, (d) en-face map after correction of the jitter between the lines, (e) en-face map after removing all phase influences, and (f) enlargement of the rectangle in (e).

Fig. 3
Fig. 3

Images of a U.S. Air Force resolution target. (a) cSLM image, (b) OCT intensity image, (c) phase image (color bar, measured phase in radians; white bar represents 20 μ m ).

Fig. 4
Fig. 4

Images of human erythrocytes. (a) cSLM image, (b) OCT intensity image, (c) phase image (color bar, measured optical path length difference in nm; white bar represents 20 μ m ), (d) enlargement ( 2 × ) and perspective surface view of the region marked with a rectangle in (c).

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

ϕ ( t ) = ϕ AOM ( t ) + ϕ x   scanning ( t ) + ϕ y   scanning ( t ) + ϕ jitter ( t ) + ϕ sample ( t ) .
ϕ m ϕ m + 1 = Δ ϕ m + 1 = ϕ m jitter ϕ m + 1 jitter + ϕ m y   scanning ϕ m + 1 y   scanning .
Δ ϕ 1 + Δ ϕ 2 = ϕ 1 jitter ϕ 3 jitter + ϕ 1 y   scanning ϕ 3 y   scanning .
k = 1 m Δ ϕ k = ϕ 1 jitter ϕ m jitter + ϕ 1 y   scanning ϕ m y   scanning .
ϕ m + k = 1 m Δ ϕ k = ϕ x   scanning ( t ) + ϕ 1 y   scanning ( t ) + ϕ 1 jitter ( t ) + ϕ m sample .

Metrics