Abstract

We present what we believe to be a novel approach to measuring optical path length differences with a precision of a few nanometers. The instrument is based on transverse scanning or en-face optical coherence tomography. Owing to the fast motion of the scanning beam over the sample, excellent phase stability in the transverse direction is achieved. Hence, phase changes caused by the varying optical path lengths within the sample arm occur with high frequency in the fast scanning direction. These changes are well separated from the rather slow phase changes introduced by jitter within the interferometer and can therefore be measured. The en-face imaging speed of the instrument is 40 fps (520×200 pixels). The measured precision of the method to detect small changes in optical path lengths was ~3 nm.

© 2009 Optical Society of America

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription