Abstract

By using specially designed three-core fiber, a microstructured light-pattern generator for sensing 3-D shapes has been demonstrated. The square or hexagon grid-interferometric fringe pattern formed by the fiber-optic interferometric grid generator is projected onto an object’s surface. The deformed grid pattern containing information of the object’s surface topography is captured by a CCD camera and is analyzed using 2-D Fourier transforming profilometry. The use of the fiber-optic grid-interferogram technique greatly simplifies the holographic interferometry system, and the carrier grid interferogram can be conveniently generated without the use of excessive auxiliary components or sophisticated experimental devices; moreover, the three-core fiber can be used in very narrow places, owing to its small size. Finally, the square or hexagon grid-interferometric fringe pattern provides a data-fusion ability that could further improve the accuracy of the 3-D shape-sensing results.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. H. Takasaki, Appl. Opt. 9, 942 (1970).
    [CrossRef]
  2. T. Yoshizawa, J. Robustic. Mech. 3, 80 (1991).
  3. V. Srinivasan, H.-C. Liu, and M. Halioua, Appl. Opt. 23, 3l05 (1984).
    [CrossRef]
  4. X.-Y. Su, W.-S. Zhou, V. von Bally, and D. Vukicevic, Opt. Commun. 94, 561 (1992).
    [CrossRef]
  5. X.-Y. Su, G. von Bally, and D. Vukicevic, Opt. Commun. 98, 141 (1993).
    [CrossRef]
  6. W.-S. Zhou and X.-Y. Su, J. Mol. Spectrosc. 41, 89 (1994).
  7. J.-L. Li, X. Su, and H.-J. Su, Opt. Lasers Eng. 30, 107 (1998).
    [CrossRef]
  8. J. Li, X. Su, and H. Su, Proc. SPIE 2778, 481 (1996).
    [CrossRef]
  9. X. Lian and X. Su, Opt. Lasers Eng. 27, 379 (1997).
    [CrossRef]
  10. J. Li, H. Su, and X. Su, Appl. Opt. 36, 277 (1997).
    [CrossRef] [PubMed]
  11. H. Zhang, M. J. Lalor, and D. R. Burton, Appl. Opt. 38, 3534 (1999).
    [CrossRef]
  12. M. Takeda, H. Ina, and S. Koboyashi, J. Opt. Soc. Am. 72, l56 (1982).
    [CrossRef]
  13. M. Takeda and K. Motoh, Appl. Opt. 22, 3977 (1983).
    [CrossRef] [PubMed]
  14. X. Su and L. Su, Proc. SPIE 3558, 1 (1998).
    [CrossRef]
  15. L. Su, X. Su, and W. Li, Appl. Opt. 38, 1153 (1999).
    [CrossRef]
  16. L. B. Yuan, Chin. Phys. Lett. 14, 675 (1997).
    [CrossRef]
  17. L. B. Yuan and L. M. Zhou, Opt. Fiber Technol. 4, 224 (1998).
    [CrossRef]
  18. R. J. Green, J. G. Walker, and D. W. Robinson, Opt. Lasers Eng. 8, 29 (1988).
    [CrossRef]
  19. T. R. Judge, C. Quan, and P. J. Bryanston-Cross, Opt. Eng. (Bellingham) 31, 533 (1992).
    [CrossRef]
  20. W. W. Macy, Appl. Opt. 22, 3898 (1983).
    [CrossRef] [PubMed]
  21. D. J. Bone, H. A. Bachor, and R. J. Sandeman, Appl. Opt. 25, 1653 (1986).
    [CrossRef] [PubMed]
  22. M. O. Petersen, Proc. SPIE 1508, 73 (1991).
    [CrossRef]
  23. J. M. Huntley and H. Saldner, Appl. Opt. 32, 3047 (1993).
    [CrossRef] [PubMed]
  24. T. Kreis, J. Opt. Soc. Am. A 3, 847 (1986).
    [CrossRef]
  25. L. B. Yuan, Z. Liu, and J. Yang, Opt. Lett. 31, 3237 (2006).
    [CrossRef] [PubMed]
  26. F. Berryman, P. Pynsent, and J. Cubillo, Opt. Lasers Eng. 41, 815 (2004).
    [CrossRef]
  27. G. S. Spagnolo, G. Guattari, C. Sapia, D. Ambrosini, D. Paoletti, and G. Accardo, J. Opt. A Pure Appl. Opt. 2, 353 (2000).
    [CrossRef]
  28. T. L. Pennington, H. Xiao, R. May, and A. Wang, Opt. Laser Technol. 33, 313 (2001).
    [CrossRef]

2006 (1)

2004 (1)

F. Berryman, P. Pynsent, and J. Cubillo, Opt. Lasers Eng. 41, 815 (2004).
[CrossRef]

2001 (1)

T. L. Pennington, H. Xiao, R. May, and A. Wang, Opt. Laser Technol. 33, 313 (2001).
[CrossRef]

2000 (1)

G. S. Spagnolo, G. Guattari, C. Sapia, D. Ambrosini, D. Paoletti, and G. Accardo, J. Opt. A Pure Appl. Opt. 2, 353 (2000).
[CrossRef]

1999 (2)

1998 (3)

X. Su and L. Su, Proc. SPIE 3558, 1 (1998).
[CrossRef]

L. B. Yuan and L. M. Zhou, Opt. Fiber Technol. 4, 224 (1998).
[CrossRef]

J.-L. Li, X. Su, and H.-J. Su, Opt. Lasers Eng. 30, 107 (1998).
[CrossRef]

1997 (3)

X. Lian and X. Su, Opt. Lasers Eng. 27, 379 (1997).
[CrossRef]

L. B. Yuan, Chin. Phys. Lett. 14, 675 (1997).
[CrossRef]

J. Li, H. Su, and X. Su, Appl. Opt. 36, 277 (1997).
[CrossRef] [PubMed]

1996 (1)

J. Li, X. Su, and H. Su, Proc. SPIE 2778, 481 (1996).
[CrossRef]

1994 (1)

W.-S. Zhou and X.-Y. Su, J. Mol. Spectrosc. 41, 89 (1994).

1993 (2)

J. M. Huntley and H. Saldner, Appl. Opt. 32, 3047 (1993).
[CrossRef] [PubMed]

X.-Y. Su, G. von Bally, and D. Vukicevic, Opt. Commun. 98, 141 (1993).
[CrossRef]

1992 (2)

X.-Y. Su, W.-S. Zhou, V. von Bally, and D. Vukicevic, Opt. Commun. 94, 561 (1992).
[CrossRef]

T. R. Judge, C. Quan, and P. J. Bryanston-Cross, Opt. Eng. (Bellingham) 31, 533 (1992).
[CrossRef]

1991 (2)

M. O. Petersen, Proc. SPIE 1508, 73 (1991).
[CrossRef]

T. Yoshizawa, J. Robustic. Mech. 3, 80 (1991).

1988 (1)

R. J. Green, J. G. Walker, and D. W. Robinson, Opt. Lasers Eng. 8, 29 (1988).
[CrossRef]

1986 (2)

1984 (1)

V. Srinivasan, H.-C. Liu, and M. Halioua, Appl. Opt. 23, 3l05 (1984).
[CrossRef]

1983 (2)

1982 (1)

M. Takeda, H. Ina, and S. Koboyashi, J. Opt. Soc. Am. 72, l56 (1982).
[CrossRef]

1970 (1)

Appl. Opt. (9)

Chin. Phys. Lett. (1)

L. B. Yuan, Chin. Phys. Lett. 14, 675 (1997).
[CrossRef]

J. Mol. Spectrosc. (1)

W.-S. Zhou and X.-Y. Su, J. Mol. Spectrosc. 41, 89 (1994).

J. Opt. A Pure Appl. Opt. (1)

G. S. Spagnolo, G. Guattari, C. Sapia, D. Ambrosini, D. Paoletti, and G. Accardo, J. Opt. A Pure Appl. Opt. 2, 353 (2000).
[CrossRef]

J. Opt. Soc. Am. (1)

M. Takeda, H. Ina, and S. Koboyashi, J. Opt. Soc. Am. 72, l56 (1982).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Robustic. Mech. (1)

T. Yoshizawa, J. Robustic. Mech. 3, 80 (1991).

Opt. Commun. (2)

X.-Y. Su, W.-S. Zhou, V. von Bally, and D. Vukicevic, Opt. Commun. 94, 561 (1992).
[CrossRef]

X.-Y. Su, G. von Bally, and D. Vukicevic, Opt. Commun. 98, 141 (1993).
[CrossRef]

Opt. Eng. (Bellingham) (1)

T. R. Judge, C. Quan, and P. J. Bryanston-Cross, Opt. Eng. (Bellingham) 31, 533 (1992).
[CrossRef]

Opt. Fiber Technol. (1)

L. B. Yuan and L. M. Zhou, Opt. Fiber Technol. 4, 224 (1998).
[CrossRef]

Opt. Laser Technol. (1)

T. L. Pennington, H. Xiao, R. May, and A. Wang, Opt. Laser Technol. 33, 313 (2001).
[CrossRef]

Opt. Lasers Eng. (4)

F. Berryman, P. Pynsent, and J. Cubillo, Opt. Lasers Eng. 41, 815 (2004).
[CrossRef]

R. J. Green, J. G. Walker, and D. W. Robinson, Opt. Lasers Eng. 8, 29 (1988).
[CrossRef]

J.-L. Li, X. Su, and H.-J. Su, Opt. Lasers Eng. 30, 107 (1998).
[CrossRef]

X. Lian and X. Su, Opt. Lasers Eng. 27, 379 (1997).
[CrossRef]

Opt. Lett. (1)

Proc. SPIE (3)

X. Su and L. Su, Proc. SPIE 3558, 1 (1998).
[CrossRef]

J. Li, X. Su, and H. Su, Proc. SPIE 2778, 481 (1996).
[CrossRef]

M. O. Petersen, Proc. SPIE 1508, 73 (1991).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Generation of square and hexagonal interference-grid patterns by three-core fibers.

Fig. 2
Fig. 2

Relative positions of the three-fiber grid generator, the object, and the CCD detection target.

Fig. 3
Fig. 3

Fusion-splicing and tapering coupling approach of the single-core single-mode fiber to a three-core single-mode fiber.

Fig. 4
Fig. 4

Experimental results of the semisphere reconstruction. (a) Modulated by square and hexagonal grid pattern. (b) 3-D shape and surface edge reconstruction of a semisphere.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

I ( x , y ) = I 1 + I 2 + I 3 + 2 I 1 I 2 cos { 2 π λ D ( a x + b y ) δ 21 } + 2 I 1 I 3 cos { 2 π λ D ( c x + d y ) δ 31 } + 2 I 2 I 3 cos { 2 π λ D [ ( c a ) x + ( d b ) y ] δ 32 } ,
I ( x , y ) = I 1 + I 2 + I 3 + 2 I 1 I 2 cos Θ cos { 2 π λ D ( a cos Θ x + b y ) δ 21 } + 2 I 1 I 3 cos Θ cos { 2 π λ D ( c cos Θ x + d y ) δ 31 } + 2 I 2 I 3 cos Θ cos { 2 π λ D [ ( c a ) cos Θ x + ( d b ) y ] δ 32 } .
I D ( x , y ) = A ( x , y ) + B 1 ( x , y ) cos { 2 π f 0 x 1 x + 2 π f 0 y 1 y + φ 1 ( x , y ) } + B 2 ( x , y ) cos { 2 π f 0 x 2 x + 2 π f 0 y 2 y + φ 2 ( x , y ) } + B 3 ( x , y ) cos { 2 π f 0 x 3 x + 2 π f 0 y 3 y + φ 3 ( x , y ) } ,
{ f 0 x 1 = a ( λ D cos Θ ) f 0 x 2 = c ( λ D cos Θ ) f 0 x 3 = ( c a ) ( λ D cos Θ ) { f 0 y 1 = b ( λ D ) f 0 y 2 = d ( λ D ) f 0 y 3 = ( d b ) ( λ D ) .
I D ( x , y ) = A ( x , y ) + C 1 ( x , y ) e i 2 π ( f 0 x 1 x + f 0 y 1 y ) + C 1 * ( x , y ) e i 2 π ( f 0 x 1 x + f 0 y 1 y ) + C 2 ( x , y ) e i 2 π ( f 0 x 2 x + f 0 y 2 y ) + C 2 * ( x , y ) e i 2 π ( f 0 x 2 x + f o y 2 ) + C 3 ( x , y ) e i 2 π ( f 0 x 3 x + f 0 y 3 y ) + C 3 * ( x , y ) e i 2 π ( f 0 x 3 x + f 0 y 3 y ) ,
φ i ( x , y ) = arctan { Re [ C i ( x , y ) ] Im [ C i ( x , y ) ] } [ i = 1 , 2 , 3 ] ,
φ ( x , y ) = 1 2 i = 1 2 φ i ( x , y ) .

Metrics