Abstract

A variable aperture has been fabricated and demonstrated using polydimethylsiloxane-based optofluidic technology. The device consists of a deformable membrane, an air pressure chamber, a cavity filled with light-absorbing liquid, and a rigid transparent upper plate. The working principle of the device is based on the deformable capability of the thin membrane structure and its resultant contact with the rigid plate. The contact area can be easily controlled by varying the air volume introduced and hence can serve as a light transmission aperture. Experimental results show that aperture diameter can be continuously changed from zero to 6.35mm.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. R. R. A. Syms, H. Zou, J. Stagg, and H. Veladi, J. Micromech. Microeng. 14, 1700 (2004).
    [CrossRef]
  2. D. Psaltis, S. R. Quake, and C. Yang, Nature 442, 381 (2006).
    [CrossRef] [PubMed]
  3. D. Y. Zhang, N. Justis, and Y. H. Lo, Opt. Lett. 29, 2855 (2004).
    [CrossRef]
  4. Q. Kou, I. Yesilyurt, and Y. Chen, Appl. Phys. Lett. 88, 091101 (2006).
    [CrossRef]
  5. Z. Li, Z. Zhang, T. Emery, A. Scherer, and D. Psaltis, Opt. Express 14, 696 (2006).
    [CrossRef] [PubMed]
  6. M. Gersborg-Hansen and A. Kristensen, Appl. Phys. Lett. 89, 103581 (2006).
    [CrossRef]
  7. D. Y. Zhang, N. Justis, and Y. H. Lo, Appl. Phys. Lett. 84, 4194 (2004).
    [CrossRef]
  8. D. Erickson, T. Rockwood, T. Emery, A. Scherer, and D. Psaltis, Opt. Lett. 31, 59 (2006).
    [CrossRef] [PubMed]
  9. P. Domachuk, I. C. M. Littler, M. Cronin-Golomb, and B. J. Eggleton, Appl. Phys. Lett. 88, 093513 (2006).
    [CrossRef]
  10. D. K. Amani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, Nature 142, 925 (2003).
    [CrossRef]
  11. A. M. Armani and K. J. Vahala, Opt. Lett. 31, 1896 (2006).
    [CrossRef] [PubMed]
  12. Y. Lu, G. L. Liu, J. Kim, Y. X. Mejia, and L. P. Lee, Nano Lett. 5, 119 (2005).
    [CrossRef] [PubMed]
  13. C. Grillet, P. Domachuk, V. Ta'eed, E. Magi, J. A. Bolger, and B. J. Eggleton, Opt. Express 12, 5440 (2004).
    [CrossRef] [PubMed]
  14. D. C. Dayton, J. D. Mansell, J. D. Gonglewski, and S. R. Restaino, Opt. Commun. 200, 99 (2001).
    [CrossRef]
  15. P. Pedersen, Comput. Mech. 37, 221 (2006).
    [CrossRef]
  16. M. E. R. Shanahan, J. Adhes. 63, 15 (1997).
    [CrossRef]
  17. M. E. R. Shanahan, J. Adhes. 79, 881 (2003).
    [CrossRef]
  18. N. Chronis, G. L. Lin, K. H. Jeong, and L. P. Lee, Opt. Express 11, 2370 (2003).
    [CrossRef] [PubMed]

2006 (8)

Q. Kou, I. Yesilyurt, and Y. Chen, Appl. Phys. Lett. 88, 091101 (2006).
[CrossRef]

Z. Li, Z. Zhang, T. Emery, A. Scherer, and D. Psaltis, Opt. Express 14, 696 (2006).
[CrossRef] [PubMed]

M. Gersborg-Hansen and A. Kristensen, Appl. Phys. Lett. 89, 103581 (2006).
[CrossRef]

D. Psaltis, S. R. Quake, and C. Yang, Nature 442, 381 (2006).
[CrossRef] [PubMed]

D. Erickson, T. Rockwood, T. Emery, A. Scherer, and D. Psaltis, Opt. Lett. 31, 59 (2006).
[CrossRef] [PubMed]

P. Domachuk, I. C. M. Littler, M. Cronin-Golomb, and B. J. Eggleton, Appl. Phys. Lett. 88, 093513 (2006).
[CrossRef]

A. M. Armani and K. J. Vahala, Opt. Lett. 31, 1896 (2006).
[CrossRef] [PubMed]

P. Pedersen, Comput. Mech. 37, 221 (2006).
[CrossRef]

2005 (1)

Y. Lu, G. L. Liu, J. Kim, Y. X. Mejia, and L. P. Lee, Nano Lett. 5, 119 (2005).
[CrossRef] [PubMed]

2004 (4)

C. Grillet, P. Domachuk, V. Ta'eed, E. Magi, J. A. Bolger, and B. J. Eggleton, Opt. Express 12, 5440 (2004).
[CrossRef] [PubMed]

D. Y. Zhang, N. Justis, and Y. H. Lo, Opt. Lett. 29, 2855 (2004).
[CrossRef]

D. Y. Zhang, N. Justis, and Y. H. Lo, Appl. Phys. Lett. 84, 4194 (2004).
[CrossRef]

R. R. A. Syms, H. Zou, J. Stagg, and H. Veladi, J. Micromech. Microeng. 14, 1700 (2004).
[CrossRef]

2003 (3)

D. K. Amani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, Nature 142, 925 (2003).
[CrossRef]

M. E. R. Shanahan, J. Adhes. 79, 881 (2003).
[CrossRef]

N. Chronis, G. L. Lin, K. H. Jeong, and L. P. Lee, Opt. Express 11, 2370 (2003).
[CrossRef] [PubMed]

2001 (1)

D. C. Dayton, J. D. Mansell, J. D. Gonglewski, and S. R. Restaino, Opt. Commun. 200, 99 (2001).
[CrossRef]

1997 (1)

M. E. R. Shanahan, J. Adhes. 63, 15 (1997).
[CrossRef]

Appl. Phys. Lett. (4)

Q. Kou, I. Yesilyurt, and Y. Chen, Appl. Phys. Lett. 88, 091101 (2006).
[CrossRef]

M. Gersborg-Hansen and A. Kristensen, Appl. Phys. Lett. 89, 103581 (2006).
[CrossRef]

D. Y. Zhang, N. Justis, and Y. H. Lo, Appl. Phys. Lett. 84, 4194 (2004).
[CrossRef]

P. Domachuk, I. C. M. Littler, M. Cronin-Golomb, and B. J. Eggleton, Appl. Phys. Lett. 88, 093513 (2006).
[CrossRef]

Comput. Mech. (1)

P. Pedersen, Comput. Mech. 37, 221 (2006).
[CrossRef]

J. Adhes. (2)

M. E. R. Shanahan, J. Adhes. 63, 15 (1997).
[CrossRef]

M. E. R. Shanahan, J. Adhes. 79, 881 (2003).
[CrossRef]

J. Micromech. Microeng. (1)

R. R. A. Syms, H. Zou, J. Stagg, and H. Veladi, J. Micromech. Microeng. 14, 1700 (2004).
[CrossRef]

Nano Lett. (1)

Y. Lu, G. L. Liu, J. Kim, Y. X. Mejia, and L. P. Lee, Nano Lett. 5, 119 (2005).
[CrossRef] [PubMed]

Nature (2)

D. Psaltis, S. R. Quake, and C. Yang, Nature 442, 381 (2006).
[CrossRef] [PubMed]

D. K. Amani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, Nature 142, 925 (2003).
[CrossRef]

Opt. Commun. (1)

D. C. Dayton, J. D. Mansell, J. D. Gonglewski, and S. R. Restaino, Opt. Commun. 200, 99 (2001).
[CrossRef]

Opt. Express (3)

Opt. Lett. (3)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic of the device design. (a) Initial state. (b) Intermediate state, membrane is deflected upward without contacting the bottom surface of the upper plate. (c) Optical transmission state, membrane and upper plate are brought into contact. (d) Top views of the corresponding light field. Left is the light field of cases (a) and (b), while right is that of case (c).

Fig. 2
Fig. 2

Process flow.

Fig. 3
Fig. 3

Fabricated device at different working states.

Fig. 4
Fig. 4

Measured aperture size as a function of air volume inflated.

Fig. 5
Fig. 5

Image captured by a CCD at different aperture diameters: (a) 0.64 mm , (b) 2.42 mm , (c) 3.77 mm , (d) 6.26 mm .

Fig. 6
Fig. 6

Light intensity distribution along the radial direction.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

2 S ( r ) = P T ,

Metrics