Abstract

We report a miniaturized inline Fabry–Perot interferometer directly fabricated on a single-mode optical fiber with a femtosecond laser. The device had a loss of 16dB and an interference visibility exceeding 14dB. The device was tested and survived in high temperatures up to 1100°C. With an accessible cavity and all-glass structure, the new device is attractive for sensing applications in high-temperature harsh environments.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. C. E. Lee and H. F. Taylor, Electron. Lett. 24, 193 (1988).
    [CrossRef]
  2. R. O. Claus, M. F. Gunther, A. Wang, and K. A. Murphy, J. Smart Mater. Struct. 1, 237 (1992).
    [CrossRef]
  3. A. Wang, H. Xiao, J. Wang, Z. Wang, W. Zhao, and R. G. May, J. Lightwave Technol. 19, 1495 (2001).
    [CrossRef]
  4. H. Xiao, J. Deng, G. Pickrell, R. G. May, and A. Wang, J. Lightwave Technol. 21, 2276 (2003).
    [CrossRef]
  5. V. Bhatia, K. A. Murphy, R. O. Claus, M. E. Jones, J. L. Grace, T. A. Tran, and J. A. Greene, Meas. Sci. Technol. 7, 58 (1996).
    [CrossRef]
  6. Y. Zhang, X. Chen, Y. Wang, K. L. Cooper, and A. Wang, J. Lightwave Technol. 25, 1797 (2007).
    [CrossRef]
  7. M. Li, S. Menon, J. P. Nibarger, and G. N. Gibson, Phys. Rev. Lett. 82, 2394 (1999).
    [CrossRef]
  8. L. Jiang and H. L. Tsai, J. Appl. Phys. 100, 023116 (2005).
    [CrossRef]
  9. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, Opt. Lett. 21, 1729 (1996).
    [CrossRef] [PubMed]
  10. A. Szameit, D. Bloemer, J. Burghoff, T. Pertsch, S. Nolte, F. Lederer, and A. Tuennermann, Appl. Phys. B 82, 507 (2006).
    [CrossRef]
  11. H. Sun, F. He, Z. Zhou, Y. Cheng, Z. Xu, K. Sugioka, and K. Midorikawa, Opt. Lett. 32, 1536 (2007).
    [CrossRef] [PubMed]
  12. E. Hecht, Optics, 4th ed. (Addison Wesley, 2002).
  13. B. Qi, G. R. Pickrell, J. Xu, P. Zhang, Y. Duan, W. Peng, Z. Huang, W. Huo, H. Xiao, R. G. May, and A. Wang, Opt. Eng. 42, 3165 (2003).
    [CrossRef]

2007 (2)

2006 (1)

A. Szameit, D. Bloemer, J. Burghoff, T. Pertsch, S. Nolte, F. Lederer, and A. Tuennermann, Appl. Phys. B 82, 507 (2006).
[CrossRef]

2005 (1)

L. Jiang and H. L. Tsai, J. Appl. Phys. 100, 023116 (2005).
[CrossRef]

2003 (2)

H. Xiao, J. Deng, G. Pickrell, R. G. May, and A. Wang, J. Lightwave Technol. 21, 2276 (2003).
[CrossRef]

B. Qi, G. R. Pickrell, J. Xu, P. Zhang, Y. Duan, W. Peng, Z. Huang, W. Huo, H. Xiao, R. G. May, and A. Wang, Opt. Eng. 42, 3165 (2003).
[CrossRef]

2001 (1)

1999 (1)

M. Li, S. Menon, J. P. Nibarger, and G. N. Gibson, Phys. Rev. Lett. 82, 2394 (1999).
[CrossRef]

1996 (2)

K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, Opt. Lett. 21, 1729 (1996).
[CrossRef] [PubMed]

V. Bhatia, K. A. Murphy, R. O. Claus, M. E. Jones, J. L. Grace, T. A. Tran, and J. A. Greene, Meas. Sci. Technol. 7, 58 (1996).
[CrossRef]

1992 (1)

R. O. Claus, M. F. Gunther, A. Wang, and K. A. Murphy, J. Smart Mater. Struct. 1, 237 (1992).
[CrossRef]

1988 (1)

C. E. Lee and H. F. Taylor, Electron. Lett. 24, 193 (1988).
[CrossRef]

Appl. Phys. B (1)

A. Szameit, D. Bloemer, J. Burghoff, T. Pertsch, S. Nolte, F. Lederer, and A. Tuennermann, Appl. Phys. B 82, 507 (2006).
[CrossRef]

Electron. Lett. (1)

C. E. Lee and H. F. Taylor, Electron. Lett. 24, 193 (1988).
[CrossRef]

J. Appl. Phys. (1)

L. Jiang and H. L. Tsai, J. Appl. Phys. 100, 023116 (2005).
[CrossRef]

J. Lightwave Technol. (3)

J. Smart Mater. Struct. (1)

R. O. Claus, M. F. Gunther, A. Wang, and K. A. Murphy, J. Smart Mater. Struct. 1, 237 (1992).
[CrossRef]

Meas. Sci. Technol. (1)

V. Bhatia, K. A. Murphy, R. O. Claus, M. E. Jones, J. L. Grace, T. A. Tran, and J. A. Greene, Meas. Sci. Technol. 7, 58 (1996).
[CrossRef]

Opt. Eng. (1)

B. Qi, G. R. Pickrell, J. Xu, P. Zhang, Y. Duan, W. Peng, Z. Huang, W. Huo, H. Xiao, R. G. May, and A. Wang, Opt. Eng. 42, 3165 (2003).
[CrossRef]

Opt. Lett. (2)

Phys. Rev. Lett. (1)

M. Li, S. Menon, J. P. Nibarger, and G. N. Gibson, Phys. Rev. Lett. 82, 2394 (1999).
[CrossRef]

Other (1)

E. Hecht, Optics, 4th ed. (Addison Wesley, 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Fiber inline FPI device fabrication system using a femtosecond laser.

Fig. 2
Fig. 2

Schematic structure and SEM images of fiber inline FPI device fabricated by femtosecond laser ablation. (a) Structural illustration, (b) top view, and (c) cross section.

Fig. 3
Fig. 3

Interference spectrum of the fabricated fiber inline FPI device. Inset, interference fringe plotted in dB scale.

Fig. 4
Fig. 4

Fiber inline FP device in response to temperature change.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

I = I 1 + I 2 + 2 I 1 I 2 cos ( 4 π L λ + φ 0 ) ,
( 4 π L λ 1 + φ 0 ) ( 4 π L λ 2 + φ 0 ) = 2 π ,

Metrics