Abstract

An adapted method of optimization of coated metallic nanoparticles is introduced to perform the optimal choice of material and sizes for better scattering or absorption efficiency. This design of nanoshells, involving plasmon resonance, is achieved to maximize the efficiency factors. The presented method is turned to tune the efficiency of nanoshells for biomedical applications and an increasing of the efficiency factors by 1 or 2 orders of magnitude is predicted with realistic materials.

© 2008 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Effect of number density on optimal design of gold nanoshells for plasmonic photothermal therapy

Debabrata Sikdar, Ivan D. Rukhlenko, Wenlong Cheng, and Malin Premaratne
Biomed. Opt. Express 4(1) 15-31 (2013)

Nanoshells for photothermal therapy: a Monte-Carlo based numerical study of their design tolerance

Thomas Grosges, Dominique Barchiesi, Sameh Kessentini, Gérard Gréhan, and Marc Lamy de la Chapelle
Biomed. Opt. Express 2(6) 1584-1596 (2011)

Nanostructures for surface plasmons

Junxi Zhang and Lide Zhang
Adv. Opt. Photon. 4(2) 157-321 (2012)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (1)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (2)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription