Abstract

A three-dimensional imaging system incorporating multiplexed holographic gratings to visualize fluorescence tissue structures is presented. Holographic gratings formed in volume recording materials such as a phenanthrenquinone poly(methyl methacrylate) photopolymer have narrowband angular and spectral transmittance filtering properties that enable obtaining spatial–spectral information within an object. We demonstrate this imaging system’s ability to obtain multiple depth-resolved fluorescence images simultaneously.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Denk, J. H. Strickler, and W. W. Webb, Science 248, 73 (1990).
    [CrossRef] [PubMed]
  2. A. R. Rouse and A. F. Gmitro, Opt. Lett. 25, 1708 (2000).
    [CrossRef]
  3. J. E. Jureller, H. Y. Kim, and N. F. Scherer, Opt. Express 14, 3406 (2006).
    [CrossRef] [PubMed]
  4. H. Cang, C. Shan Xu, D. Montiel, and H. Yang, Opt. Lett. 32, 2729 (2007).
    [CrossRef] [PubMed]
  5. J. Pawley, Handbook of Biological Confocal Microscopy, 2nd ed. (Springer, 1995).
  6. J. W. Goodman, Introduction to Fourier Optics, 3rd ed. (McGraw-Hill, 2002).
  7. H. Coufal, L. Hesselink, and D. Psaltis, Holographic Data Storage (Springer-Verlag, 2002).
  8. K. Y. Hsu, S. H. Lin, Y.-N. Hsiao, and W. T. Whang, Opt. Eng. (Bellingham) 42, 1390 (2003).
    [CrossRef]
  9. Y. Luo, P. J. Gelsinger, J. K. Barton, G. Barbastathis, and R. K. Kostuk, Opt. Lett. 33, 566 (2008).
    [CrossRef] [PubMed]
  10. H. Kogelnik, Bell Syst. Tech. J. 48, 2909 (1969).

2008

2007

2006

2003

K. Y. Hsu, S. H. Lin, Y.-N. Hsiao, and W. T. Whang, Opt. Eng. (Bellingham) 42, 1390 (2003).
[CrossRef]

2000

1990

W. Denk, J. H. Strickler, and W. W. Webb, Science 248, 73 (1990).
[CrossRef] [PubMed]

1969

H. Kogelnik, Bell Syst. Tech. J. 48, 2909 (1969).

Barbastathis, G.

Barton, J. K.

Cang, H.

Coufal, H.

H. Coufal, L. Hesselink, and D. Psaltis, Holographic Data Storage (Springer-Verlag, 2002).

Denk, W.

W. Denk, J. H. Strickler, and W. W. Webb, Science 248, 73 (1990).
[CrossRef] [PubMed]

Gelsinger, P. J.

Gmitro, A. F.

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics, 3rd ed. (McGraw-Hill, 2002).

Hesselink, L.

H. Coufal, L. Hesselink, and D. Psaltis, Holographic Data Storage (Springer-Verlag, 2002).

Hsiao, Y.-N.

K. Y. Hsu, S. H. Lin, Y.-N. Hsiao, and W. T. Whang, Opt. Eng. (Bellingham) 42, 1390 (2003).
[CrossRef]

Hsu, K. Y.

K. Y. Hsu, S. H. Lin, Y.-N. Hsiao, and W. T. Whang, Opt. Eng. (Bellingham) 42, 1390 (2003).
[CrossRef]

Jureller, J. E.

Kim, H. Y.

Kogelnik, H.

H. Kogelnik, Bell Syst. Tech. J. 48, 2909 (1969).

Kostuk, R. K.

Lin, S. H.

K. Y. Hsu, S. H. Lin, Y.-N. Hsiao, and W. T. Whang, Opt. Eng. (Bellingham) 42, 1390 (2003).
[CrossRef]

Luo, Y.

Montiel, D.

Pawley, J.

J. Pawley, Handbook of Biological Confocal Microscopy, 2nd ed. (Springer, 1995).

Psaltis, D.

H. Coufal, L. Hesselink, and D. Psaltis, Holographic Data Storage (Springer-Verlag, 2002).

Rouse, A. R.

Scherer, N. F.

Strickler, J. H.

W. Denk, J. H. Strickler, and W. W. Webb, Science 248, 73 (1990).
[CrossRef] [PubMed]

Webb, W. W.

W. Denk, J. H. Strickler, and W. W. Webb, Science 248, 73 (1990).
[CrossRef] [PubMed]

Whang, W. T.

K. Y. Hsu, S. H. Lin, Y.-N. Hsiao, and W. T. Whang, Opt. Eng. (Bellingham) 42, 1390 (2003).
[CrossRef]

Xu, C. Shan

Yang, H.

Bell Syst. Tech. J.

H. Kogelnik, Bell Syst. Tech. J. 48, 2909 (1969).

Opt. Eng. (Bellingham)

K. Y. Hsu, S. H. Lin, Y.-N. Hsiao, and W. T. Whang, Opt. Eng. (Bellingham) 42, 1390 (2003).
[CrossRef]

Opt. Express

Opt. Lett.

Science

W. Denk, J. H. Strickler, and W. W. Webb, Science 248, 73 (1990).
[CrossRef] [PubMed]

Other

J. Pawley, Handbook of Biological Confocal Microscopy, 2nd ed. (Springer, 1995).

J. W. Goodman, Introduction to Fourier Optics, 3rd ed. (McGraw-Hill, 2002).

H. Coufal, L. Hesselink, and D. Psaltis, Holographic Data Storage (Springer-Verlag, 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Construction setup of multiplexed gratings by using spherical and planar waves. M1 is the objective lens translated from a fixed objective lens M2. The angle of the reference beam is changed by Δ θ between each exposure to record a hologram.

Fig. 2
Fig. 2

Experimental imaging setup. L1 is the objective lens and L2 is the collector lens.

Fig. 3
Fig. 3

(a) Bragg circle diagram for K-vector closure. (b) Geometry for analysis of a holographic grating.

Fig. 4
Fig. 4

Fluorescence images of mouse fat stained with acridine orange. The figure was obtained with the VHIS system using a two grating hologram with an 8° angle between the reference beams. Two simultaneous depth-resolved images are projected and the depth separation is 65 μ m .

Fig. 5
Fig. 5

Image enhancement with background subtraction applied simultaneously to two depth-resolved images in Fig. 4.

Fig. 6
Fig. 6

Fluorescence images of mouse colon stained with acridine orange, obtained with the VHIS system. Image enhancement with background subtraction has been applied. Colonic crypts ( 20 μ m cross section) can be visualized.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

k i , 1 k d , 1 = k i , 2 k d , 2 = K ,
k i , 1 = k d , 1 = 2 π n λ , k i , 2 = k d , 2 = 2 π n λ + d λ ,
θ λ = K 4 π n sin ( α θ ) ,

Metrics