Abstract

We describe a simple implementation of a slit scanning confocal microscope to obtain an axial resolution better than that of a point-scanning confocal microscope. Under slit illumination, images of a fluorescent object are captured using an array detector instead of a line detector so that out-of-focus light is recorded and then subtracted from the adjacent images. Axial resolution after background subtraction is 2.2 times better than the slit confocal resolution, and out-of-focus image suppression is calculated to attenuate with defocus faster by 1 order of magnitude than in the point confocal case.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T.Wilson, ed., Confocal Microscopy (Academic, 1990).
  2. C. J. R. Sheppard and X. Q. Mao, J. Mod. Opt. 35, 1169 (1988).
    [CrossRef]
  3. M. A. A. Neil, R. Juskaitis, and T. Wilson, Opt. Lett. 22, 1905 (1997).
    [CrossRef]
  4. R. Gauderon and C. J. R. Sheppard, Bioimaging 6, 126 (1998).
    [CrossRef]
  5. R. Heintzmann and P. A. Benedetti, Appl. Opt. 45, 5037 (2006).
    [CrossRef] [PubMed]
  6. H. X. Zhang, E. Gu, C. W. Jeon, Z. Gong, M. D. Dawson, M. A. A. Neil, and P. M. W. French, IEEE Photon. Technol. Lett. 18, 1681 (2006).
    [CrossRef]
  7. V. Poher, H. X. Zhang, G. T. Kennedy, C. Griffin, S. Oddos, E. Gu, D. S. Elson, J. M. Girkin, P. M. W. French, M. D. Dawson, and M. A. A. Neil, Opt. Express 15, 11196 (2007).
    [CrossRef] [PubMed]
  8. J. Canny, IEEE Trans. Pattern Anal. Mach. Intell. 8, 679 (1986).
    [CrossRef] [PubMed]
  9. P. A. Stokseth, J. Opt. Soc. Am. 59, 1314 (1969).
    [CrossRef]

2007 (1)

2006 (2)

R. Heintzmann and P. A. Benedetti, Appl. Opt. 45, 5037 (2006).
[CrossRef] [PubMed]

H. X. Zhang, E. Gu, C. W. Jeon, Z. Gong, M. D. Dawson, M. A. A. Neil, and P. M. W. French, IEEE Photon. Technol. Lett. 18, 1681 (2006).
[CrossRef]

1998 (1)

R. Gauderon and C. J. R. Sheppard, Bioimaging 6, 126 (1998).
[CrossRef]

1997 (1)

1988 (1)

C. J. R. Sheppard and X. Q. Mao, J. Mod. Opt. 35, 1169 (1988).
[CrossRef]

1986 (1)

J. Canny, IEEE Trans. Pattern Anal. Mach. Intell. 8, 679 (1986).
[CrossRef] [PubMed]

1969 (1)

Benedetti, P. A.

Canny, J.

J. Canny, IEEE Trans. Pattern Anal. Mach. Intell. 8, 679 (1986).
[CrossRef] [PubMed]

Dawson, M. D.

Elson, D. S.

French, P. M. W.

Gauderon, R.

R. Gauderon and C. J. R. Sheppard, Bioimaging 6, 126 (1998).
[CrossRef]

Girkin, J. M.

Gong, Z.

H. X. Zhang, E. Gu, C. W. Jeon, Z. Gong, M. D. Dawson, M. A. A. Neil, and P. M. W. French, IEEE Photon. Technol. Lett. 18, 1681 (2006).
[CrossRef]

Griffin, C.

Gu, E.

Heintzmann, R.

Jeon, C. W.

H. X. Zhang, E. Gu, C. W. Jeon, Z. Gong, M. D. Dawson, M. A. A. Neil, and P. M. W. French, IEEE Photon. Technol. Lett. 18, 1681 (2006).
[CrossRef]

Juskaitis, R.

Kennedy, G. T.

Mao, X. Q.

C. J. R. Sheppard and X. Q. Mao, J. Mod. Opt. 35, 1169 (1988).
[CrossRef]

Neil, M. A. A.

Oddos, S.

Poher, V.

Sheppard, C. J. R.

R. Gauderon and C. J. R. Sheppard, Bioimaging 6, 126 (1998).
[CrossRef]

C. J. R. Sheppard and X. Q. Mao, J. Mod. Opt. 35, 1169 (1988).
[CrossRef]

Stokseth, P. A.

Wilson, T.

Zhang, H. X.

Appl. Opt. (1)

Bioimaging (1)

R. Gauderon and C. J. R. Sheppard, Bioimaging 6, 126 (1998).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

H. X. Zhang, E. Gu, C. W. Jeon, Z. Gong, M. D. Dawson, M. A. A. Neil, and P. M. W. French, IEEE Photon. Technol. Lett. 18, 1681 (2006).
[CrossRef]

IEEE Trans. Pattern Anal. Mach. Intell. (1)

J. Canny, IEEE Trans. Pattern Anal. Mach. Intell. 8, 679 (1986).
[CrossRef] [PubMed]

J. Mod. Opt. (1)

C. J. R. Sheppard and X. Q. Mao, J. Mod. Opt. 35, 1169 (1988).
[CrossRef]

J. Opt. Soc. Am. (1)

Opt. Express (1)

Opt. Lett. (1)

Other (1)

T.Wilson, ed., Confocal Microscopy (Academic, 1990).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Diagram of the microscope configuration used for experiment and numerical simulation.

Fig. 2
Fig. 2

Images of a stained pollen grain cluster. Scale bar is 6 μ m . (a) Reconstructed widefield. (b) Conventional slit confocal. (c) Improved slit confocal. (d), (e) Autoscaled zoom of the highlighted pollen grains from images (b) and (c), respectively.

Fig. 3
Fig. 3

Experimental and numerically simulated response of the microscope to a thin fluorescent sheet scanned through the focal plane. The performance of a point-scanning microscope is also shown for comparison.

Fig. 4
Fig. 4

Simulated residual intensity showing background suppression of image signals at large defocus.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

I i = j ( x ) = I i = j out ( x ) + I i = j in ( x ) ,
I i = j 1 ( x ) I i = j + 1 ( x ) I i = j out ( x ) ,
I sec , j = [ I i = j I i = j 1 + I i = j + 1 2 ] I j in .
I ( u , β ) = C 2 + 2 T 2 ( s x , 0 , u ) sinc ( p s x 2 π ) sinc ( q s x 2 π ) exp ( i s x β ) d s x .
β = 2 π n λ x sin ( α ) , u = 8 π n λ z sin 2 ( α 2 ) , s x = λ n sin α f x ,
T ( s , u ) = { g ( s ) [ 2 J 1 [ u s ( 1 s 2 ) ] u s ( 1 s 2 ) ] if 0 < s < 2 0 if 2 s , }
g ( s ) = 1 0.69 s + 0.0076 s 2 + 0.0437 s 3 .
I sub ( u ) = [ I ( u , 0 ) I ( u , β ) + I ( u , β ) 2 ] ,
= C s + T 2 ( s x , 0 , u ) sinc ( p s x 2 π ) sinc ( q s x 2 π ) [ 1 cos ( s β ) ] d s x .
I slit ( u ) = I ( u , 0 ) = C l + T 2 ( s x , 0 , u ) sinc ( p s x 2 π ) sinc ( q s x 2 π ) d s x ,
I point ( u ) = C p 0 + T 2 ( s , u ) jinc ( p s 2 ) jinc ( q s 2 ) s d s ,
I slit ( u ) 0 2 ( J 1 ( u s ) u s ) 2 d s = o ( 1 u ) ,
I point ( u ) 0 2 ( J 1 ( u s ) u s ) 2 s d s = o ( 1 u 2 ) ,
I sub ( u ) 0 2 ( J 1 ( u s ) u s ) 2 s 2 d s = o ( ln ( u ) u 3 ) ,

Metrics