Abstract

In recent years, optical tomography (OT) of highly scattering biological samples has increasingly relied on noncontact CCD-based imaging devices that can record extremely large data sets, with up to 109 independent measurements per sample. Reconstruction of such data sets requires fast algorithms. The latter have been developed and applied experimentally in our previous work to imaging of the intrinsic absorption coefficient of highly scattering media. However, it is widely recognized that the use of fluorescent contrast agents in OT has the potential to significantly enhance the technique. We show that the algorithms previously developed by us can be modified to reconstruct the concentration of fluorescent contrast agents.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. R. Arridge, Inverse Probl. 15, R41 (1999).
    [CrossRef]
  2. D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, and Q. Zhang, IEEE Signal Process. Mag. 18, 57 (2001).
    [CrossRef]
  3. Z.-M. Wang, G. Y. Panasyuk, V. A. Markel, and J. C. Schotland, Opt. Lett. 30, 3338 (2005).
    [CrossRef]
  4. G. Turner, G. Zacharakis, A. Soubret, J. Ripoll, and V. Ntziachristos, Opt. Lett. 30, 409 (2005).
    [CrossRef] [PubMed]
  5. Y. Chen, G. Zheng, Z. H. Zhang, D. Blessington, M. Zhang, H. Li, Q. Liu, L. Zhou, X. Intes, S. Achilefu, and B. Chance, Opt. Lett. 28, 2070 (2003).
    [CrossRef] [PubMed]
  6. S. Patwardham, S. Bloch, S. Achilefu, and J. Culver, Opt. Express 13, 2564 (2005).
    [CrossRef]
  7. A. Joshi, W. Bangerth, and E. M. Sevick-Muraca, Opt. Express 14, 6516 (2006).
    [CrossRef] [PubMed]
  8. A. Corlu, R. Choe, T. Durduran, M. A. Rosen, M. Schweiger, S. R. Arridge, M. D. Schnall, and A. G. Yodh, Opt. Express 15, 6696 (2007).
    [CrossRef] [PubMed]
  9. V. A. Markel and J. C. Schotland, Phys. Rev. E 70, 056616 (2004).
    [CrossRef]
  10. V. A. Markel and J. C. Schotland, Appl. Phys. Lett. 81, 1180 (2002).
    [CrossRef]
  11. J. C. Schotland, J. Opt. Soc. Am. A 14, 275 (1997).
    [CrossRef]
  12. We have utilized the nonlinear optimization procedure implemented in GNUPLOT. The two-dimensional spatial Fourier transform of the intensity transmitted through a homogeneous slab was fitted to the analytical formula. Depending on the initial guess, the optimization yielded two distinct sets of parameters: k, l, one of which was used in the image reconstruction, while the other was clearly unphysical (l>10cm and k<0.02cm−1) and, therefore, disregarded.
  13. R. C. Benson and H. A. Kues, Phys. Med. Biol. 23, 159 (1978).
    [CrossRef] [PubMed]

2007 (1)

2006 (1)

2005 (3)

2004 (1)

V. A. Markel and J. C. Schotland, Phys. Rev. E 70, 056616 (2004).
[CrossRef]

2003 (1)

2002 (1)

V. A. Markel and J. C. Schotland, Appl. Phys. Lett. 81, 1180 (2002).
[CrossRef]

2001 (1)

D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, and Q. Zhang, IEEE Signal Process. Mag. 18, 57 (2001).
[CrossRef]

1999 (1)

S. R. Arridge, Inverse Probl. 15, R41 (1999).
[CrossRef]

1997 (1)

1978 (1)

R. C. Benson and H. A. Kues, Phys. Med. Biol. 23, 159 (1978).
[CrossRef] [PubMed]

Achilefu, S.

Arridge, S. R.

Bangerth, W.

Benson, R. C.

R. C. Benson and H. A. Kues, Phys. Med. Biol. 23, 159 (1978).
[CrossRef] [PubMed]

Blessington, D.

Bloch, S.

Boas, D. A.

D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, and Q. Zhang, IEEE Signal Process. Mag. 18, 57 (2001).
[CrossRef]

Brooks, D. H.

D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, and Q. Zhang, IEEE Signal Process. Mag. 18, 57 (2001).
[CrossRef]

Chance, B.

Chen, Y.

Choe, R.

Corlu, A.

Culver, J.

DiMarzio, C. A.

D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, and Q. Zhang, IEEE Signal Process. Mag. 18, 57 (2001).
[CrossRef]

Durduran, T.

Gaudette, R. J.

D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, and Q. Zhang, IEEE Signal Process. Mag. 18, 57 (2001).
[CrossRef]

Intes, X.

Joshi, A.

Kilmer, M.

D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, and Q. Zhang, IEEE Signal Process. Mag. 18, 57 (2001).
[CrossRef]

Kues, H. A.

R. C. Benson and H. A. Kues, Phys. Med. Biol. 23, 159 (1978).
[CrossRef] [PubMed]

Li, H.

Liu, Q.

Markel, V. A.

Z.-M. Wang, G. Y. Panasyuk, V. A. Markel, and J. C. Schotland, Opt. Lett. 30, 3338 (2005).
[CrossRef]

V. A. Markel and J. C. Schotland, Phys. Rev. E 70, 056616 (2004).
[CrossRef]

V. A. Markel and J. C. Schotland, Appl. Phys. Lett. 81, 1180 (2002).
[CrossRef]

Miller, E. L.

D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, and Q. Zhang, IEEE Signal Process. Mag. 18, 57 (2001).
[CrossRef]

Ntziachristos, V.

Panasyuk, G. Y.

Patwardham, S.

Ripoll, J.

Rosen, M. A.

Schnall, M. D.

Schotland, J. C.

Z.-M. Wang, G. Y. Panasyuk, V. A. Markel, and J. C. Schotland, Opt. Lett. 30, 3338 (2005).
[CrossRef]

V. A. Markel and J. C. Schotland, Phys. Rev. E 70, 056616 (2004).
[CrossRef]

V. A. Markel and J. C. Schotland, Appl. Phys. Lett. 81, 1180 (2002).
[CrossRef]

J. C. Schotland, J. Opt. Soc. Am. A 14, 275 (1997).
[CrossRef]

Schweiger, M.

Sevick-Muraca, E. M.

Soubret, A.

Turner, G.

Wang, Z.-M.

Yodh, A. G.

Zacharakis, G.

Zhang, M.

Zhang, Q.

D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, and Q. Zhang, IEEE Signal Process. Mag. 18, 57 (2001).
[CrossRef]

Zhang, Z. H.

Zheng, G.

Zhou, L.

Appl. Phys. Lett. (1)

V. A. Markel and J. C. Schotland, Appl. Phys. Lett. 81, 1180 (2002).
[CrossRef]

IEEE Signal Process. Mag. (1)

D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, and Q. Zhang, IEEE Signal Process. Mag. 18, 57 (2001).
[CrossRef]

Inverse Probl. (1)

S. R. Arridge, Inverse Probl. 15, R41 (1999).
[CrossRef]

J. Opt. Soc. Am. A (1)

Opt. Express (3)

Opt. Lett. (3)

Phys. Med. Biol. (1)

R. C. Benson and H. A. Kues, Phys. Med. Biol. 23, 159 (1978).
[CrossRef] [PubMed]

Phys. Rev. E (1)

V. A. Markel and J. C. Schotland, Phys. Rev. E 70, 056616 (2004).
[CrossRef]

Other (1)

We have utilized the nonlinear optimization procedure implemented in GNUPLOT. The two-dimensional spatial Fourier transform of the intensity transmitted through a homogeneous slab was fitted to the analytical formula. Depending on the initial guess, the optimization yielded two distinct sets of parameters: k, l, one of which was used in the image reconstruction, while the other was clearly unphysical (l>10cm and k<0.02cm−1) and, therefore, disregarded.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (1)

Fig. 1
Fig. 1

Reconstruction of a ( r ) for two cylinders filled with an Intralipid solution identical to the surrounding fluid but containing variable amounts of ICG. The field of view is 15 cm × 15 cm . (left) The ICG concentration is 1 mg L in both tubes, but the left tube is immersed only halfway (with respect to the field of view). (right) Both tubes are immersed all the way but have different ICG concentration: 1 mg L in the left tube and 2 mg L in the right tube.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

D 2 u e ( r ) + α u e ( r ) = S ( r ) ,
D 2 u f ( r ) + α u f ( r ) = η c σ e n ( r ) u e ( r ) .
u e ( r ) = V G ( r , r ) S ( r ) d 3 r ,
u f ( r ) = V G ( r , r ) a ( r ) u e ( r ) d 3 r ,
I f ( r d ) = C d ( r d ) c 4 π ( 1 + l * l ) G ( r d , r ) a ( r ) u e ( r ) d 3 r ,
I f ( r d , r s ) = C d ( r d ) C s ( r s ) c S 0 μ s 4 π μ * ( 1 + l * l ) 2 × V G ( r d , r ) a ( r ) G ( r , r s ) d 3 r .
ϕ ( r d , r s ) = D G ( r d , r s ) I f ( r d , r s ) I e ( r d , r s ) .
k 2 V D G ( r d , r ) a ( r ) α D G ( r , r s ) d 3 r = ϕ ( r d , r s ) .

Metrics