Abstract

In contrast to fluorescence enhancement of fluorophores embedded in a photonic crystal structure as previously reported [Appl. Phys. Lett. 75, 3605 (1999) ], in this Letter we demonstrate a unique approach to forming an open microcavity using a one-dimensional photonic crystal in a total-internal-reflection geometry. This configuration opens up the possibility for enhancing fluorescence imaging and biosensing. Time-resolved fluorescence detection of fluorophores immobilized on the open cavity has been carried out. Over 20-fold fluorescence enhancement was observed.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Wu, D. Day, and M. Gu, Appl. Phys. Lett. 92, 071108 (2008).
    [CrossRef]
  2. J. Y. Ye, M. T. Myaing, T. P. Thomas, I. Majoros, A. Koltyar, J. J. R. Baker, W. J. Wadsworth, G. Bouwmans, J. C. Knight, P. S. J. Russell, and T. B. Norris, Proc. SPIE 5700, 23 (2005).
    [CrossRef]
  3. M. T. Myaing, J. Y. Ye, T. B. Norris, T. Thomas, J. R. Baker, W. J. Wadsworth, G. Bouwmans, J. C. Knight, and P. S. J. Russell, Opt. Lett. 28, 1224 (2003).
    [CrossRef] [PubMed]
  4. J. N. Winn, Y. Fink, S. H. Fan, and J. D. Joannopoulos, Opt. Lett. 23, 1573 (1998).
    [CrossRef]
  5. H. Inouye, M. Arakawa, J. Y. Ye, T. Hattori, H. Nakatsuka, and K. Hirao, IEEE J. Quantum Electron. 38, 867 (2002).
    [CrossRef]
  6. W. Q. Ding, L. X. Chen, and S. T. Liu, Opt. Commun. 246, 147 (2005).
    [CrossRef]
  7. L. Fekete, F. Kadlec, H. Nemec, and P. Kuzel, Opt. Express 15, 8898 (2007).
    [CrossRef] [PubMed]
  8. J. Y. Ye, M. Ishikawa, Y. Yamane, N. Tsurumachi, and H. Nakatsuka, Appl. Phys. Lett. 75, 3605 (1999).
    [CrossRef]

2008 (1)

J. Wu, D. Day, and M. Gu, Appl. Phys. Lett. 92, 071108 (2008).
[CrossRef]

2007 (1)

2005 (2)

J. Y. Ye, M. T. Myaing, T. P. Thomas, I. Majoros, A. Koltyar, J. J. R. Baker, W. J. Wadsworth, G. Bouwmans, J. C. Knight, P. S. J. Russell, and T. B. Norris, Proc. SPIE 5700, 23 (2005).
[CrossRef]

W. Q. Ding, L. X. Chen, and S. T. Liu, Opt. Commun. 246, 147 (2005).
[CrossRef]

2003 (1)

2002 (1)

H. Inouye, M. Arakawa, J. Y. Ye, T. Hattori, H. Nakatsuka, and K. Hirao, IEEE J. Quantum Electron. 38, 867 (2002).
[CrossRef]

1999 (1)

J. Y. Ye, M. Ishikawa, Y. Yamane, N. Tsurumachi, and H. Nakatsuka, Appl. Phys. Lett. 75, 3605 (1999).
[CrossRef]

1998 (1)

Arakawa, M.

H. Inouye, M. Arakawa, J. Y. Ye, T. Hattori, H. Nakatsuka, and K. Hirao, IEEE J. Quantum Electron. 38, 867 (2002).
[CrossRef]

Baker, J. J. R.

J. Y. Ye, M. T. Myaing, T. P. Thomas, I. Majoros, A. Koltyar, J. J. R. Baker, W. J. Wadsworth, G. Bouwmans, J. C. Knight, P. S. J. Russell, and T. B. Norris, Proc. SPIE 5700, 23 (2005).
[CrossRef]

Baker, J. R.

Bouwmans, G.

J. Y. Ye, M. T. Myaing, T. P. Thomas, I. Majoros, A. Koltyar, J. J. R. Baker, W. J. Wadsworth, G. Bouwmans, J. C. Knight, P. S. J. Russell, and T. B. Norris, Proc. SPIE 5700, 23 (2005).
[CrossRef]

M. T. Myaing, J. Y. Ye, T. B. Norris, T. Thomas, J. R. Baker, W. J. Wadsworth, G. Bouwmans, J. C. Knight, and P. S. J. Russell, Opt. Lett. 28, 1224 (2003).
[CrossRef] [PubMed]

Chen, L. X.

W. Q. Ding, L. X. Chen, and S. T. Liu, Opt. Commun. 246, 147 (2005).
[CrossRef]

Day, D.

J. Wu, D. Day, and M. Gu, Appl. Phys. Lett. 92, 071108 (2008).
[CrossRef]

Ding, W. Q.

W. Q. Ding, L. X. Chen, and S. T. Liu, Opt. Commun. 246, 147 (2005).
[CrossRef]

Fan, S. H.

Fekete, L.

Fink, Y.

Gu, M.

J. Wu, D. Day, and M. Gu, Appl. Phys. Lett. 92, 071108 (2008).
[CrossRef]

Hattori, T.

H. Inouye, M. Arakawa, J. Y. Ye, T. Hattori, H. Nakatsuka, and K. Hirao, IEEE J. Quantum Electron. 38, 867 (2002).
[CrossRef]

Hirao, K.

H. Inouye, M. Arakawa, J. Y. Ye, T. Hattori, H. Nakatsuka, and K. Hirao, IEEE J. Quantum Electron. 38, 867 (2002).
[CrossRef]

Inouye, H.

H. Inouye, M. Arakawa, J. Y. Ye, T. Hattori, H. Nakatsuka, and K. Hirao, IEEE J. Quantum Electron. 38, 867 (2002).
[CrossRef]

Ishikawa, M.

J. Y. Ye, M. Ishikawa, Y. Yamane, N. Tsurumachi, and H. Nakatsuka, Appl. Phys. Lett. 75, 3605 (1999).
[CrossRef]

Joannopoulos, J. D.

Kadlec, F.

Knight, J. C.

J. Y. Ye, M. T. Myaing, T. P. Thomas, I. Majoros, A. Koltyar, J. J. R. Baker, W. J. Wadsworth, G. Bouwmans, J. C. Knight, P. S. J. Russell, and T. B. Norris, Proc. SPIE 5700, 23 (2005).
[CrossRef]

M. T. Myaing, J. Y. Ye, T. B. Norris, T. Thomas, J. R. Baker, W. J. Wadsworth, G. Bouwmans, J. C. Knight, and P. S. J. Russell, Opt. Lett. 28, 1224 (2003).
[CrossRef] [PubMed]

Koltyar, A.

J. Y. Ye, M. T. Myaing, T. P. Thomas, I. Majoros, A. Koltyar, J. J. R. Baker, W. J. Wadsworth, G. Bouwmans, J. C. Knight, P. S. J. Russell, and T. B. Norris, Proc. SPIE 5700, 23 (2005).
[CrossRef]

Kuzel, P.

Liu, S. T.

W. Q. Ding, L. X. Chen, and S. T. Liu, Opt. Commun. 246, 147 (2005).
[CrossRef]

Majoros, I.

J. Y. Ye, M. T. Myaing, T. P. Thomas, I. Majoros, A. Koltyar, J. J. R. Baker, W. J. Wadsworth, G. Bouwmans, J. C. Knight, P. S. J. Russell, and T. B. Norris, Proc. SPIE 5700, 23 (2005).
[CrossRef]

Myaing, M. T.

J. Y. Ye, M. T. Myaing, T. P. Thomas, I. Majoros, A. Koltyar, J. J. R. Baker, W. J. Wadsworth, G. Bouwmans, J. C. Knight, P. S. J. Russell, and T. B. Norris, Proc. SPIE 5700, 23 (2005).
[CrossRef]

M. T. Myaing, J. Y. Ye, T. B. Norris, T. Thomas, J. R. Baker, W. J. Wadsworth, G. Bouwmans, J. C. Knight, and P. S. J. Russell, Opt. Lett. 28, 1224 (2003).
[CrossRef] [PubMed]

Nakatsuka, H.

H. Inouye, M. Arakawa, J. Y. Ye, T. Hattori, H. Nakatsuka, and K. Hirao, IEEE J. Quantum Electron. 38, 867 (2002).
[CrossRef]

J. Y. Ye, M. Ishikawa, Y. Yamane, N. Tsurumachi, and H. Nakatsuka, Appl. Phys. Lett. 75, 3605 (1999).
[CrossRef]

Nemec, H.

Norris, T. B.

J. Y. Ye, M. T. Myaing, T. P. Thomas, I. Majoros, A. Koltyar, J. J. R. Baker, W. J. Wadsworth, G. Bouwmans, J. C. Knight, P. S. J. Russell, and T. B. Norris, Proc. SPIE 5700, 23 (2005).
[CrossRef]

M. T. Myaing, J. Y. Ye, T. B. Norris, T. Thomas, J. R. Baker, W. J. Wadsworth, G. Bouwmans, J. C. Knight, and P. S. J. Russell, Opt. Lett. 28, 1224 (2003).
[CrossRef] [PubMed]

Russell, P. S. J.

J. Y. Ye, M. T. Myaing, T. P. Thomas, I. Majoros, A. Koltyar, J. J. R. Baker, W. J. Wadsworth, G. Bouwmans, J. C. Knight, P. S. J. Russell, and T. B. Norris, Proc. SPIE 5700, 23 (2005).
[CrossRef]

M. T. Myaing, J. Y. Ye, T. B. Norris, T. Thomas, J. R. Baker, W. J. Wadsworth, G. Bouwmans, J. C. Knight, and P. S. J. Russell, Opt. Lett. 28, 1224 (2003).
[CrossRef] [PubMed]

Thomas, T.

Thomas, T. P.

J. Y. Ye, M. T. Myaing, T. P. Thomas, I. Majoros, A. Koltyar, J. J. R. Baker, W. J. Wadsworth, G. Bouwmans, J. C. Knight, P. S. J. Russell, and T. B. Norris, Proc. SPIE 5700, 23 (2005).
[CrossRef]

Tsurumachi, N.

J. Y. Ye, M. Ishikawa, Y. Yamane, N. Tsurumachi, and H. Nakatsuka, Appl. Phys. Lett. 75, 3605 (1999).
[CrossRef]

Wadsworth, W. J.

J. Y. Ye, M. T. Myaing, T. P. Thomas, I. Majoros, A. Koltyar, J. J. R. Baker, W. J. Wadsworth, G. Bouwmans, J. C. Knight, P. S. J. Russell, and T. B. Norris, Proc. SPIE 5700, 23 (2005).
[CrossRef]

M. T. Myaing, J. Y. Ye, T. B. Norris, T. Thomas, J. R. Baker, W. J. Wadsworth, G. Bouwmans, J. C. Knight, and P. S. J. Russell, Opt. Lett. 28, 1224 (2003).
[CrossRef] [PubMed]

Winn, J. N.

Wu, J.

J. Wu, D. Day, and M. Gu, Appl. Phys. Lett. 92, 071108 (2008).
[CrossRef]

Yamane, Y.

J. Y. Ye, M. Ishikawa, Y. Yamane, N. Tsurumachi, and H. Nakatsuka, Appl. Phys. Lett. 75, 3605 (1999).
[CrossRef]

Ye, J. Y.

J. Y. Ye, M. T. Myaing, T. P. Thomas, I. Majoros, A. Koltyar, J. J. R. Baker, W. J. Wadsworth, G. Bouwmans, J. C. Knight, P. S. J. Russell, and T. B. Norris, Proc. SPIE 5700, 23 (2005).
[CrossRef]

M. T. Myaing, J. Y. Ye, T. B. Norris, T. Thomas, J. R. Baker, W. J. Wadsworth, G. Bouwmans, J. C. Knight, and P. S. J. Russell, Opt. Lett. 28, 1224 (2003).
[CrossRef] [PubMed]

H. Inouye, M. Arakawa, J. Y. Ye, T. Hattori, H. Nakatsuka, and K. Hirao, IEEE J. Quantum Electron. 38, 867 (2002).
[CrossRef]

J. Y. Ye, M. Ishikawa, Y. Yamane, N. Tsurumachi, and H. Nakatsuka, Appl. Phys. Lett. 75, 3605 (1999).
[CrossRef]

Appl. Phys. Lett. (2)

J. Wu, D. Day, and M. Gu, Appl. Phys. Lett. 92, 071108 (2008).
[CrossRef]

J. Y. Ye, M. Ishikawa, Y. Yamane, N. Tsurumachi, and H. Nakatsuka, Appl. Phys. Lett. 75, 3605 (1999).
[CrossRef]

IEEE J. Quantum Electron. (1)

H. Inouye, M. Arakawa, J. Y. Ye, T. Hattori, H. Nakatsuka, and K. Hirao, IEEE J. Quantum Electron. 38, 867 (2002).
[CrossRef]

Opt. Commun. (1)

W. Q. Ding, L. X. Chen, and S. T. Liu, Opt. Commun. 246, 147 (2005).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Proc. SPIE (1)

J. Y. Ye, M. T. Myaing, T. P. Thomas, I. Majoros, A. Koltyar, J. J. R. Baker, W. J. Wadsworth, G. Bouwmans, J. C. Knight, P. S. J. Russell, and T. B. Norris, Proc. SPIE 5700, 23 (2005).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Conceptually split sample sandwiched by two PCs. The thickness of the substrate (typically a few millimeters) and the dielectric layers are not plotted to scale. (b) Use only one PC in a TIR geometry. Owing to the TIR, a mirror image of the PC structure results in a virtual structure similar to that of the sandwiched sample; thus local field enhancement is being obtained at the defect layer as well. (c) This open configuration allows easy access by a microscope objective lens for sensitive detection of the enhanced fluorescence signals.

Fig. 2
Fig. 2

Comparison of fluorescence intensity from samples with and without a PC structure.

Fig. 3
Fig. 3

Enhanced fluorescence from a PC structure used in a TIR geometry: (a) spectrum, (b) decay curve.

Fig. 4
Fig. 4

Incident angle dependence of the fluorescence intensity from a PC sample in a TIR geometry in comparison with the reference sample without a PC structure.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

d A = λ 4 ( n A 2 n S 2 sin 2 θ S ) 1 2 ,
d B = λ 4 ( n B 2 n S 2 sin 2 θ S ) 1 2 ,
2 n X d X cos θ X + α λ d 2 π = ( 2 m + 1 ) 2 λ d , ( m = 0 , 1 , 2 , ) ,
d X = ( π α ) λ d 4 π ( n X 2 n S 2 sin 2 θ S ) 1 2 .
α s = 2 tan 1 ( n t ( sin 2 θ X sin 2 θ C 1 ) 1 2 n X cos θ X ) = 2 tan 1 ( ( n S 2 sin 2 θ S n t 2 n X 2 n S 2 sin 2 θ S ) 1 2 ) ,
d X = λ d 4 π ( n X 2 n S 2 sin 2 θ S ) 1 2 ( π 2 tan 1 ( ( n S 2 sin 2 θ S n t 2 n X 2 n S 2 sin 2 θ S ) 1 2 ) ) .

Metrics