Abstract

A new approach is proposed for manipulating and rotating micro- or nano-objects by using polarized laser light with low intensity. The polarized light excites resonant dipoles on a cap-shaped Au nanoparticle array, which generates a highly nonuniform radiation field that induces large dielectrophoresis force on dielectric objects. The orientation control of the objects is realized by adjusting the polarization direction of the incident light. Theoretical modeling, fabrication, and characterization results for the cap-shaped Au nanoparticle array, as well as preliminary trapping results, are reported.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. B. Jones, Electromechanics of Particles (Cambridge U. Press, 1995).
    [CrossRef]
  2. A. Ashkin, Proc. Natl. Acad. Sci. USA 94, 4853 (1997).
    [CrossRef] [PubMed]
  3. K. C. Neuman, E. H. Chadd, G. F. Liou, K. Bergman, and S. M. Block, Biophys. J. 77, 2856 (1999).
    [CrossRef] [PubMed]
  4. P. C. Chiou, A. T. Ohta, and M. C. Wu, Nature 436, 370 (2005).
    [CrossRef] [PubMed]
  5. X. Miao, "Opto-plasmonic tweezers for manipulation and rotation of micro/nano objects--design and fabrication," Masters thesis (University of Washington, Seattle, 2006).
  6. J. D. Jackson, Classical Electrodynamics (Wiley, 1975).
  7. M. Nishioka, S. Katsura, K. Hirano, and A. Mizuno, IEEE Trans. Ind. Appl. 33, 1381 (1997).
    [CrossRef]
  8. X. Miao, H. Liao, and L. Y. Lin, in Proceedings of IEEE International Conference on Optical MEMS and Their Applications (IEEE, 2005), pp. 15-16.
    [CrossRef]

2005

P. C. Chiou, A. T. Ohta, and M. C. Wu, Nature 436, 370 (2005).
[CrossRef] [PubMed]

1999

K. C. Neuman, E. H. Chadd, G. F. Liou, K. Bergman, and S. M. Block, Biophys. J. 77, 2856 (1999).
[CrossRef] [PubMed]

1997

A. Ashkin, Proc. Natl. Acad. Sci. USA 94, 4853 (1997).
[CrossRef] [PubMed]

M. Nishioka, S. Katsura, K. Hirano, and A. Mizuno, IEEE Trans. Ind. Appl. 33, 1381 (1997).
[CrossRef]

Ashkin, A.

A. Ashkin, Proc. Natl. Acad. Sci. USA 94, 4853 (1997).
[CrossRef] [PubMed]

Bergman, K.

K. C. Neuman, E. H. Chadd, G. F. Liou, K. Bergman, and S. M. Block, Biophys. J. 77, 2856 (1999).
[CrossRef] [PubMed]

Block, S. M.

K. C. Neuman, E. H. Chadd, G. F. Liou, K. Bergman, and S. M. Block, Biophys. J. 77, 2856 (1999).
[CrossRef] [PubMed]

Chadd, E. H.

K. C. Neuman, E. H. Chadd, G. F. Liou, K. Bergman, and S. M. Block, Biophys. J. 77, 2856 (1999).
[CrossRef] [PubMed]

Chiou, P. C.

P. C. Chiou, A. T. Ohta, and M. C. Wu, Nature 436, 370 (2005).
[CrossRef] [PubMed]

Hirano, K.

M. Nishioka, S. Katsura, K. Hirano, and A. Mizuno, IEEE Trans. Ind. Appl. 33, 1381 (1997).
[CrossRef]

Jackson, J. D.

J. D. Jackson, Classical Electrodynamics (Wiley, 1975).

Jones, T. B.

T. B. Jones, Electromechanics of Particles (Cambridge U. Press, 1995).
[CrossRef]

Katsura, S.

M. Nishioka, S. Katsura, K. Hirano, and A. Mizuno, IEEE Trans. Ind. Appl. 33, 1381 (1997).
[CrossRef]

Liao, H.

X. Miao, H. Liao, and L. Y. Lin, in Proceedings of IEEE International Conference on Optical MEMS and Their Applications (IEEE, 2005), pp. 15-16.
[CrossRef]

Lin, L. Y.

X. Miao, H. Liao, and L. Y. Lin, in Proceedings of IEEE International Conference on Optical MEMS and Their Applications (IEEE, 2005), pp. 15-16.
[CrossRef]

Liou, G. F.

K. C. Neuman, E. H. Chadd, G. F. Liou, K. Bergman, and S. M. Block, Biophys. J. 77, 2856 (1999).
[CrossRef] [PubMed]

Miao, X.

X. Miao, H. Liao, and L. Y. Lin, in Proceedings of IEEE International Conference on Optical MEMS and Their Applications (IEEE, 2005), pp. 15-16.
[CrossRef]

X. Miao, "Opto-plasmonic tweezers for manipulation and rotation of micro/nano objects--design and fabrication," Masters thesis (University of Washington, Seattle, 2006).

Mizuno, A.

M. Nishioka, S. Katsura, K. Hirano, and A. Mizuno, IEEE Trans. Ind. Appl. 33, 1381 (1997).
[CrossRef]

Neuman, K. C.

K. C. Neuman, E. H. Chadd, G. F. Liou, K. Bergman, and S. M. Block, Biophys. J. 77, 2856 (1999).
[CrossRef] [PubMed]

Nishioka, M.

M. Nishioka, S. Katsura, K. Hirano, and A. Mizuno, IEEE Trans. Ind. Appl. 33, 1381 (1997).
[CrossRef]

Ohta, A. T.

P. C. Chiou, A. T. Ohta, and M. C. Wu, Nature 436, 370 (2005).
[CrossRef] [PubMed]

Wu, M. C.

P. C. Chiou, A. T. Ohta, and M. C. Wu, Nature 436, 370 (2005).
[CrossRef] [PubMed]

Biophys. J.

K. C. Neuman, E. H. Chadd, G. F. Liou, K. Bergman, and S. M. Block, Biophys. J. 77, 2856 (1999).
[CrossRef] [PubMed]

IEEE Trans. Ind. Appl.

M. Nishioka, S. Katsura, K. Hirano, and A. Mizuno, IEEE Trans. Ind. Appl. 33, 1381 (1997).
[CrossRef]

Nature

P. C. Chiou, A. T. Ohta, and M. C. Wu, Nature 436, 370 (2005).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. USA

A. Ashkin, Proc. Natl. Acad. Sci. USA 94, 4853 (1997).
[CrossRef] [PubMed]

Other

T. B. Jones, Electromechanics of Particles (Cambridge U. Press, 1995).
[CrossRef]

X. Miao, H. Liao, and L. Y. Lin, in Proceedings of IEEE International Conference on Optical MEMS and Their Applications (IEEE, 2005), pp. 15-16.
[CrossRef]

X. Miao, "Opto-plasmonic tweezers for manipulation and rotation of micro/nano objects--design and fabrication," Masters thesis (University of Washington, Seattle, 2006).

J. D. Jackson, Classical Electrodynamics (Wiley, 1975).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Manipulating and rotating biological cells with polarized light.

Fig. 2
Fig. 2

(a) Direction of the radial force and angular force component; (b) amplitude cross section of the radial force and angular force. The distance between a point on the curve and the dipole center represents the force amplitude at that orientation.

Fig. 3
Fig. 3

(a) Induced DEP force exerted on the cell versus the vertical distance from the Au nanoparticle array under various incident light power; (b) associated torque exerted on the cell versus time. The inset shows the corresponding rotation trajectory for the cell’s long axis.

Fig. 4
Fig. 4

Scanning electron micrograph of the cap-shaped Au nanoparticle array. (a) Sample formed with 200 nm polystyrene spheres; (b) sample formed with 500 nm polystyrene spheres; (c) scattering spectra of the Au nanoparticle array formed with 200 and 500 nm polystyrene spheres. The insets in (a) and (b) are the corresponding dark-field fluorescent microscope images taken at regions with sparse distribution.

Fig. 5
Fig. 5

Demonstration of trapping a single polystyrene sphere by using the proposed approach. The polystyrene sphere located at the light spot (circled in black or red) is trapped, while other polystyrene spheres (circled in white) in the suspension move together with the motorized stage.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

P = A n d p = 4 A n q 2 n 1 m ω α n 1 2 ω 2 + ω p 2 ω 2 E 0 ,
E = k 2 P 4 π ϵ 1 r sin θ exp i ω ( t r c ) ,
F = 2 π R 3 ϵ 1 K ( 1 ) ( k 2 P 4 π ϵ 1 ) 2 ( r ̂ 2 r 3 sin 2 θ + θ ̂ 2 r 3 sin θ cos θ ) F r r ̂ + F θ θ ̂ .

Metrics