Abstract

Structural investigations of materials in diverse fields such as biomimetics, materials engineering, and medicine have much to benefit from 3D nondestructive microscopy of representative samples of wet tissues. Phase contrast appearing in tomograms produced by Fresnel propagation of partially coherent x-ray fields is useful for visualizing submicrometer features within water-immersed samples. However, spurious contributions such as those due to randomly appearing bubbles lead to distorted images. By improving the statistics during image acquisition and reconstruction, submicrometer-sized tubules in human tooth dentin are observed. This type of wet imaging is directly applicable to the study of many mineralized tissues.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. O. Prymak, H. Tiemann, I. Soetje, J. C. Marxen, A. Klocke, B. Kahl-Nieke, F. Beckmann, T. Donath, and M. Epple, JBIC, J. Biol. Inorg. Chem. 10, 688 (2005).
    [CrossRef]
  2. D. M. Paganin, Coherent X-Ray Optics (Oxford U. Press, 2006).
    [CrossRef]
  3. H. A. Lowenstam and S. Weiner, On Biomineralization (Oxford U. Press, 1989).
  4. A. Guinier, X-ray diffraction in crystals, imperfect crystals and amorphous bodies (Freeman & Co., 1963).
  5. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1968).
  6. J.-P. Guigay, Optik (Stuttgart) 49, 121 (1977).
  7. P. Cloetens, R. Mache, M. Schlenker, and S. Lerbs-Mache, Proc. Natl. Acad. Sci. U.S.A. 103, 14626 (2006).
    [CrossRef] [PubMed]
  8. S. Zabler, P. Zaslansky, H. Riesemeier, and P. Fratzl, Opt. Express 14, 8584 (2006).
    [CrossRef] [PubMed]
  9. W. L. Mao, H. Mao, Y. Meng, P. J. Eng, M. Y. Hu, P. Chow, Y. Q. Cai, J. Shu, and R. J. Hemley, Science 314, 636 (2006).
    [CrossRef] [PubMed]
  10. S. Zabler, P. Cloetens, J.-P. Guigay, J. Baruchel, and M. Schlenker, Rev. Sci. Instrum. 76, 073705 (2005).
    [CrossRef]
  11. J. Radon, Ber. Verh. Saechs. Akad. Wiss. Leipzig, Math.-Phys. Kl. 69, 262 (1917).
  12. P. Cloetens, M. Pateyron-Salome, J. Y. Buffiere, G. Peix, J. Baruchel, F. Peyrin, and M. Schlenker, J. Appl. Phys. 81, 5878 (1997).
    [CrossRef]
  13. T. J. Davis, T. E. Gureyev, D. Gao, A. W. Stevenson, and S. W. Wilkins, Phys. Rev. Lett. 74, 3173 (1995).
    [CrossRef] [PubMed]

2006 (3)

P. Cloetens, R. Mache, M. Schlenker, and S. Lerbs-Mache, Proc. Natl. Acad. Sci. U.S.A. 103, 14626 (2006).
[CrossRef] [PubMed]

W. L. Mao, H. Mao, Y. Meng, P. J. Eng, M. Y. Hu, P. Chow, Y. Q. Cai, J. Shu, and R. J. Hemley, Science 314, 636 (2006).
[CrossRef] [PubMed]

S. Zabler, P. Zaslansky, H. Riesemeier, and P. Fratzl, Opt. Express 14, 8584 (2006).
[CrossRef] [PubMed]

2005 (2)

S. Zabler, P. Cloetens, J.-P. Guigay, J. Baruchel, and M. Schlenker, Rev. Sci. Instrum. 76, 073705 (2005).
[CrossRef]

O. Prymak, H. Tiemann, I. Soetje, J. C. Marxen, A. Klocke, B. Kahl-Nieke, F. Beckmann, T. Donath, and M. Epple, JBIC, J. Biol. Inorg. Chem. 10, 688 (2005).
[CrossRef]

1997 (1)

P. Cloetens, M. Pateyron-Salome, J. Y. Buffiere, G. Peix, J. Baruchel, F. Peyrin, and M. Schlenker, J. Appl. Phys. 81, 5878 (1997).
[CrossRef]

1995 (1)

T. J. Davis, T. E. Gureyev, D. Gao, A. W. Stevenson, and S. W. Wilkins, Phys. Rev. Lett. 74, 3173 (1995).
[CrossRef] [PubMed]

1977 (1)

J.-P. Guigay, Optik (Stuttgart) 49, 121 (1977).

1917 (1)

J. Radon, Ber. Verh. Saechs. Akad. Wiss. Leipzig, Math.-Phys. Kl. 69, 262 (1917).

Ber. Verh. Saechs. Akad. Wiss. Leipzig, Math.-Phys. Kl. (1)

J. Radon, Ber. Verh. Saechs. Akad. Wiss. Leipzig, Math.-Phys. Kl. 69, 262 (1917).

J. Appl. Phys. (1)

P. Cloetens, M. Pateyron-Salome, J. Y. Buffiere, G. Peix, J. Baruchel, F. Peyrin, and M. Schlenker, J. Appl. Phys. 81, 5878 (1997).
[CrossRef]

JBIC, J. Biol. Inorg. Chem. (1)

O. Prymak, H. Tiemann, I. Soetje, J. C. Marxen, A. Klocke, B. Kahl-Nieke, F. Beckmann, T. Donath, and M. Epple, JBIC, J. Biol. Inorg. Chem. 10, 688 (2005).
[CrossRef]

Opt. Express (1)

Optik (Stuttgart) (1)

J.-P. Guigay, Optik (Stuttgart) 49, 121 (1977).

Phys. Rev. Lett. (1)

T. J. Davis, T. E. Gureyev, D. Gao, A. W. Stevenson, and S. W. Wilkins, Phys. Rev. Lett. 74, 3173 (1995).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

P. Cloetens, R. Mache, M. Schlenker, and S. Lerbs-Mache, Proc. Natl. Acad. Sci. U.S.A. 103, 14626 (2006).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (1)

S. Zabler, P. Cloetens, J.-P. Guigay, J. Baruchel, and M. Schlenker, Rev. Sci. Instrum. 76, 073705 (2005).
[CrossRef]

Science (1)

W. L. Mao, H. Mao, Y. Meng, P. J. Eng, M. Y. Hu, P. Chow, Y. Q. Cai, J. Shu, and R. J. Hemley, Science 314, 636 (2006).
[CrossRef] [PubMed]

Other (4)

D. M. Paganin, Coherent X-Ray Optics (Oxford U. Press, 2006).
[CrossRef]

H. A. Lowenstam and S. Weiner, On Biomineralization (Oxford U. Press, 1989).

A. Guinier, X-ray diffraction in crystals, imperfect crystals and amorphous bodies (Freeman & Co., 1963).

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1968).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Component setup for Fresnel-propagated microtomography: images of the liquid immersed sample are acquired at several detector positions.

Fig. 2
Fig. 2

Projection radiographs and tomographic slices of wet dentin samples: (a) Reconstructed slice of Fresnel-propagated radiographs: note white streaks, which are due to stray intensity contributions originating from bubbles in the water. (b) Radiograph of water-immersed dentin (dense enamel on upper area appears dark) contains high-contrast bubble silhouettes. (c) Slice in a 3D time-median reconstruction with fewer stray intensities. Structural detail is observed (see Fig. 3). (d) Typical time-median radiograph.

Fig. 3
Fig. 3

Microstructural detail in dentin (a) high- and low-density regions of mineral in the dentin are obscured by image noise in slices of tomograms produced from conventional radiographs. The combination of ring artifacts and stray intensity contributions makes visualization and analysis difficult. (b) Improved reconstructed images, produced from three sequential scans, result in high-quality virtual microscopy images of interference rings corresponding to wet 1 μ m thick tubules ( D = 100 mm ) . Images obtained for larger propagation distances (c) ( D = 180 mm ) show enlarged tubules, yet the center-to-center distances ( 8 10 μ m ) remain constant.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

u 0 ( x , y ) = u inc ( x , y ) × T ( x , y ) ,
T ( x , y ) = e ( π i λ ) [ 1 n 2 ( x , y , z ) ] d z e B ( x , y ) i ϕ ( x , y ) .
I ̂ D ( f , g , φ ) = δ 2 D ( f , g ) + F 1 × ϕ ̂ ( f , g ) F 2 × B ̂ ( f , g ) .
I D ( corr ) ( x , y , φ ) = I D ( x , y , φ ) I D C ( x , y ) I B F ( x , y ) I D C ( x , y ) .
log ( I D ( corr ) ) = R ρ ( x , φ ) = sample d v d w δ ( v sin ( φ ) + w cos ( φ ) x ) ρ ( v , w ) .

Metrics