Abstract

We report a new approach to characterization of thin (bio)molecular films based on spectroscopy of Bragg-scattered surface plasmons (BSSPs) generated by diffraction-coupling of counterpropagating surface plasmons on a metal-coated diffraction grating. The BSSPs exhibit fields with different penetration depths into the medium adjacent to the metal and therefore exhibit unequal sensitivities to the presence of (bio)molecular films on the surface of the metal. Therefore, spectroscopy of BSSPs enables in situ observation of the formation of biomolecular films and determination of both their refractive index and thickness. We demonstrate this capacity of spectroscopy of BSSPs in a model experiment in which growth of protein layers on a gold surface is studied.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. H. Arwin, Thin Solid Films 48, 377 (2000).
  2. C. J. Hirschnugl, Surf. Sci. 500, 577 (2002).
    [CrossRef]
  3. V. Jacobsen, B. Menges, R. Forch, S. Mittler, and W. Knoll, Thin Solid Films 409, 185 (2002).
    [CrossRef]
  4. O. Telezhnikova and J. Homola, Opt. Lett. 31, 3339 (2006).
    [CrossRef] [PubMed]
  5. K. A. Peterlinz and R. Georgiadis, Opt. Commun. 130, 260 (1996).
    [CrossRef]
  6. P. Adam, J. Dostálek, and J. Homola, Sens. Actuators B 113, 774 (2006).
    [CrossRef]
  7. F. C. Chien and S. J. Chen, Opt. Lett. 31, 187 (2006).
    [CrossRef] [PubMed]
  8. W. L. Barnes, T. W Preist, S. C. Kitson, J. R. Sambles, N. K. Cotter, and D. J. Nash, Phys. Rev. B 51, 11164 (1995).
    [CrossRef]
  9. R. Petit, Electromagnetic Theory of Gratings (Springer-Verlag, 1980).
  10. E. Brynda, M. Houska, J. Skvor, and J. J. Ramsden, Biosens. Bioelectron. 13, 165 (1998).
    [CrossRef] [PubMed]
  11. D. C. Carter, X. M. He, S. H. Munson, P. D. Twigg, K. M. Gernert, M. B. Broom, and T. Y. Miller, Science 244, 1195 (1989).
    [CrossRef] [PubMed]
  12. H. Arwin, Appl. Spectrosc. 40, 313 (1986).
    [CrossRef]

2006 (3)

2002 (2)

C. J. Hirschnugl, Surf. Sci. 500, 577 (2002).
[CrossRef]

V. Jacobsen, B. Menges, R. Forch, S. Mittler, and W. Knoll, Thin Solid Films 409, 185 (2002).
[CrossRef]

2000 (1)

H. Arwin, Thin Solid Films 48, 377 (2000).

1998 (1)

E. Brynda, M. Houska, J. Skvor, and J. J. Ramsden, Biosens. Bioelectron. 13, 165 (1998).
[CrossRef] [PubMed]

1996 (1)

K. A. Peterlinz and R. Georgiadis, Opt. Commun. 130, 260 (1996).
[CrossRef]

1995 (1)

W. L. Barnes, T. W Preist, S. C. Kitson, J. R. Sambles, N. K. Cotter, and D. J. Nash, Phys. Rev. B 51, 11164 (1995).
[CrossRef]

1989 (1)

D. C. Carter, X. M. He, S. H. Munson, P. D. Twigg, K. M. Gernert, M. B. Broom, and T. Y. Miller, Science 244, 1195 (1989).
[CrossRef] [PubMed]

1986 (1)

Appl. Spectrosc. (1)

Biosens. Bioelectron. (1)

E. Brynda, M. Houska, J. Skvor, and J. J. Ramsden, Biosens. Bioelectron. 13, 165 (1998).
[CrossRef] [PubMed]

Opt. Commun. (1)

K. A. Peterlinz and R. Georgiadis, Opt. Commun. 130, 260 (1996).
[CrossRef]

Opt. Lett. (2)

Phys. Rev. B (1)

W. L. Barnes, T. W Preist, S. C. Kitson, J. R. Sambles, N. K. Cotter, and D. J. Nash, Phys. Rev. B 51, 11164 (1995).
[CrossRef]

Science (1)

D. C. Carter, X. M. He, S. H. Munson, P. D. Twigg, K. M. Gernert, M. B. Broom, and T. Y. Miller, Science 244, 1195 (1989).
[CrossRef] [PubMed]

Sens. Actuators B (1)

P. Adam, J. Dostálek, and J. Homola, Sens. Actuators B 113, 774 (2006).
[CrossRef]

Surf. Sci. (1)

C. J. Hirschnugl, Surf. Sci. 500, 577 (2002).
[CrossRef]

Thin Solid Films (2)

V. Jacobsen, B. Menges, R. Forch, S. Mittler, and W. Knoll, Thin Solid Films 409, 185 (2002).
[CrossRef]

H. Arwin, Thin Solid Films 48, 377 (2000).

Other (1)

R. Petit, Electromagnetic Theory of Gratings (Springer-Verlag, 1980).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Excitation of BSSPs on a two-diffraction metallic grating with spatial frequencies K 1 and K 2 ; (b) dispersion relation of a SP on a flat metal surface (dashed curve), BSSPs on a metallic grating with the spatial frequency K 2 (solid curve), and normal incident optical wave (OW) diffracted on a grating with the spatial frequency K 1 (dotted curve).

Fig. 2
Fig. 2

Comparison of theoretical (dashed curve) and experimental (solid curve) wavelength reflectivity spectra for a sinusoidal diffraction grating (modulation frequency of K 1 = 1.683 μ m 1 , modulation amplitude: 10 nm ) and two-diffraction grating (sinusoidal modulations with frequencies K 1 = 1.683 μ m 1 and K 2 = 3.366 μ m 1 and amplitudes 10 and 4.9 nm , respectively) with a gold layer and a liquid with refractive index n b = 1.3313 RIU on its top, angle of incidence θ = 0 .

Fig. 3
Fig. 3

Distribution of electric intensity E 2 of BSSPs excited on the two-diffraction grating (parameters same as in Fig. 2) at the wavelengths (a) Δ λ BSSP = 812 nm and (b) Δ λ BSSP + = 836 nm obtained by finite-difference time domain (FDTD) simulations.

Fig. 4
Fig. 4

Dependence of the SPR wavelength shifts Δ λ BSSP + and Δ λ BSSP + on the refractive index n f and thickness d of a thin dielectric film, background dielectric with refractive index of n b = 1.3313 RIU.

Fig. 5
Fig. 5

Time evolution of Δ λ BSSP + and Δ λ BSSP + when three bovine serum albumin (BSA) monolayers cross-linked with dextran sulphate (DS) were successively grown on the sensor surface from solutions prepared in citrate buffer (CB).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

2 π λ 1 n b sin ( θ ) + p 2 π K 1 = ± Re { k SP } ,

Metrics