Abstract

Polymer integrated reverse symmetry waveguides on porous silicon substrate fabricated by using deep ultraviolet radiation in poly(methyl methacrylate) are presented. The layer sequence and geometry of the waveguide enable an evanescent field extending more than 3μm into the upper waveguide or analyte layer, enabling various integrated optical devices where large evanescent fields are required. The presented fabrication technique enables the generation of defined regions where the evanescent field is larger than in the rest of the waveguide. This technology can improve the performance of evanescent-wave-based waveguide devices.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. R. C. Nesnidal and T. G. Walker, Appl. Opt. 35, 2226 (1996).
    [CrossRef] [PubMed]
  2. G. R. Quigley, R. D. Harris, and J. S. Wilkinson, Appl. Opt. 38, 6036 (1999).
    [CrossRef]
  3. D.-K. Qing and G. Chen, Appl. Phys. Lett. 84, 669 (2004).
    [CrossRef]
  4. R. Horvath, L. R. Lindvold, and N. B. Larsen, Appl. Phys. B: Lasers Opt. 74, 383 (2002).
    [CrossRef]
  5. R. Horvath and H. C. Pedersen, Appl. Phys. Lett. 81, 2166 (2002).
    [CrossRef]
  6. L. A. DeLouise and B. L. Miller, Proc. SPIE 5357, 111 (2004).
    [CrossRef]
  7. R. L. Oliveri, A. Sciuto, S. Libertino, G. D'Arrigo, and C. Arnone, in Proceedings of 2005 IEEE/LEOS Workshop on Fibres and Optical Passive Components (IEEE-LEOS, 2005), pp. 265-270.
  8. P. Henzi, K. Bade, D. G. Rabus, and J. Mohr, J. Vac. Sci. Technol. B 24, 1755 (2006).
    [CrossRef]
  9. D. G. Rabus, P. Henzi, and J. Mohr, IEEE Photon. Technol. Lett. 3, 591 (2005).
    [CrossRef]
  10. Y. G. Zhao, W. K. Lu, Y. Ma, S. S. Kim, S. T. Ho, and T. J. Marks, Appl. Phys. Lett. 77, 2961 (2000).
    [CrossRef]
  11. R. Horvath, H. C. Pedersen, N. Skivesen, C. Svanberg, and N. B. Larsen, J. Micromech. Microeng. 15, 1260 (2005).
    [CrossRef]
  12. D. A. G. Bruggeman, Ann. Phys. (Paris) 24, 636 (1935).
  13. D. G. Rabus, M. Bruendel, Y. Ichihashi, A. Welle, R. A. Seger, and M. A. Isaacson, IEEE J. Sel. Top. Quantum Electron. 13, 214 (2007).
    [CrossRef]
  14. J. D. L. Shapley and D. A. Barrow, Thin Solid Films 388, 134 (2001).
    [CrossRef]

2007 (1)

D. G. Rabus, M. Bruendel, Y. Ichihashi, A. Welle, R. A. Seger, and M. A. Isaacson, IEEE J. Sel. Top. Quantum Electron. 13, 214 (2007).
[CrossRef]

2006 (1)

P. Henzi, K. Bade, D. G. Rabus, and J. Mohr, J. Vac. Sci. Technol. B 24, 1755 (2006).
[CrossRef]

2005 (2)

D. G. Rabus, P. Henzi, and J. Mohr, IEEE Photon. Technol. Lett. 3, 591 (2005).
[CrossRef]

R. Horvath, H. C. Pedersen, N. Skivesen, C. Svanberg, and N. B. Larsen, J. Micromech. Microeng. 15, 1260 (2005).
[CrossRef]

2004 (2)

D.-K. Qing and G. Chen, Appl. Phys. Lett. 84, 669 (2004).
[CrossRef]

L. A. DeLouise and B. L. Miller, Proc. SPIE 5357, 111 (2004).
[CrossRef]

2002 (2)

R. Horvath, L. R. Lindvold, and N. B. Larsen, Appl. Phys. B: Lasers Opt. 74, 383 (2002).
[CrossRef]

R. Horvath and H. C. Pedersen, Appl. Phys. Lett. 81, 2166 (2002).
[CrossRef]

2001 (1)

J. D. L. Shapley and D. A. Barrow, Thin Solid Films 388, 134 (2001).
[CrossRef]

2000 (1)

Y. G. Zhao, W. K. Lu, Y. Ma, S. S. Kim, S. T. Ho, and T. J. Marks, Appl. Phys. Lett. 77, 2961 (2000).
[CrossRef]

1999 (1)

1996 (1)

1935 (1)

D. A. G. Bruggeman, Ann. Phys. (Paris) 24, 636 (1935).

Ann. Phys. (Paris) (1)

D. A. G. Bruggeman, Ann. Phys. (Paris) 24, 636 (1935).

Appl. Opt. (2)

Appl. Phys. B: Lasers Opt. (1)

R. Horvath, L. R. Lindvold, and N. B. Larsen, Appl. Phys. B: Lasers Opt. 74, 383 (2002).
[CrossRef]

Appl. Phys. Lett. (3)

R. Horvath and H. C. Pedersen, Appl. Phys. Lett. 81, 2166 (2002).
[CrossRef]

D.-K. Qing and G. Chen, Appl. Phys. Lett. 84, 669 (2004).
[CrossRef]

Y. G. Zhao, W. K. Lu, Y. Ma, S. S. Kim, S. T. Ho, and T. J. Marks, Appl. Phys. Lett. 77, 2961 (2000).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

D. G. Rabus, M. Bruendel, Y. Ichihashi, A. Welle, R. A. Seger, and M. A. Isaacson, IEEE J. Sel. Top. Quantum Electron. 13, 214 (2007).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

D. G. Rabus, P. Henzi, and J. Mohr, IEEE Photon. Technol. Lett. 3, 591 (2005).
[CrossRef]

J. Micromech. Microeng. (1)

R. Horvath, H. C. Pedersen, N. Skivesen, C. Svanberg, and N. B. Larsen, J. Micromech. Microeng. 15, 1260 (2005).
[CrossRef]

J. Vac. Sci. Technol. B (1)

P. Henzi, K. Bade, D. G. Rabus, and J. Mohr, J. Vac. Sci. Technol. B 24, 1755 (2006).
[CrossRef]

Proc. SPIE (1)

L. A. DeLouise and B. L. Miller, Proc. SPIE 5357, 111 (2004).
[CrossRef]

Thin Solid Films (1)

J. D. L. Shapley and D. A. Barrow, Thin Solid Films 388, 134 (2001).
[CrossRef]

Other (1)

R. L. Oliveri, A. Sciuto, S. Libertino, G. D'Arrigo, and C. Arnone, in Proceedings of 2005 IEEE/LEOS Workshop on Fibres and Optical Passive Components (IEEE-LEOS, 2005), pp. 265-270.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

IRS waveguide. a, Layer sequence and layout. b, Scanning electron microscope image of reverse symmetry waveguide. c, Near-field image of outcoupling waveguide facet.

Fig. 2
Fig. 2

SEM images of mesoporous bilayer structure. a, Pore structure of barrier layer ( 5 mA cm 2 ) . b, Pore structure of optical isolation layer ( 50 mA cm 2 ) . c, Side view of bilayer structure, illustrating anisotropic growth of pore channels and porosity contrast between barrier and optical isolation layers. d, Magnified view of barrier layer grown intentionally thick ( 120 nm ) to observe with a scanning electron microscrope. e, Magnified view of porous tip–Si wafer interface.

Fig. 3
Fig. 3

Near-field analysis of integrated reverse symmetry waveguide samples: left, without water; right, with water. Sample 5, evanescent field enhancement observed, which is attributed to the 12 nm intermediate layer. Sample 3, evanescent field enhancement not observed, no barrier layer present. The field also decays more into the PSi layer when compared with sample 5. Sample 2, evanescent field enhancement observed despite the higher value of 1.38 for the index of the lower cladding. Sample 4, evanescent field enhancement not observed, no barrier layer present. The illumination and camera parameters are unchanged throughout the entire near-field measurements to guarantee compatibility of the images.

Tables (1)

Tables Icon

Table 1 Fabrication Parameters of Porous Si Layers

Metrics