Abstract

Phase sensitive soft-x-ray microscopy methods enable the study of specimens for which phase effects are a prevalent contrast mechanism. One way to detect these phase effects is to optically implement the radial Hilbert transform by using spiral zone plates (SZPs), which results in the isotropic measurement of the amplitude and phase gradient in a sample. Soft-x-ray microscopy using an SZP as a single element objective lens was demonstrated through the imaging of a 1μm circular aperture at a wavelength of 2.73nm (454eV). A regular zone plate, a charge 1 SZP, and a charge 2 SZP were fabricated using electron beam lithography and were used as the imaging optic in the microscopy setup. The charge 1 and charge 2 SZP images exhibited isotropic edge enhancement as a result of radial Hilbert filtering.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. G. Schmahl, D. Rudolph, P. Guttman, G. Schneider, J. Thieme, and B. Niemann, Rev. Sci. Instrum. 66, 1282 (1995).
    [CrossRef]
  2. C. David, B. Nöhammer, H. H. Solak, and E. Ziegler, Appl. Phys. Lett. 81, 3287 (2002).
    [CrossRef]
  3. B. Kaulich, T. Wilhein, E. Di Fabrizio, F. Romanato, M. Altissimo, S. Cabrini, B. Fayard, and J. Susini, J. Opt. Soc. Am. A 19, 797 (2002).
    [CrossRef]
  4. E. Di Fabrizio, D. Cojoc, S. Cabrini, B. Kaulich, J. Susini, P. Facci, and T. Wilhein, Opt. Express 11, 2278 (2003).
    [CrossRef] [PubMed]
  5. C. Chang, A. Sakdinawat, P. Fischer, E. Anderson, and D. Attwood, Opt. Lett. 31, 1564 (2006).
    [CrossRef] [PubMed]
  6. J. A. Davis, D. E. McNamara, D. M. Cottrell, and J. Campos, Opt. Lett. 25, 99 (2000).
    [CrossRef]
  7. N. R. Heckenberg, R. McDuff, C. P. Smith, and A. G. White, Opt. Lett. 17, 221 (1992).
    [CrossRef] [PubMed]
  8. K. Crabtree, J. A. Davis, and I. Moreno, Appl. Opt. 43, 1360 (2004).
    [CrossRef] [PubMed]
  9. S. Fürhapter, A. Jesacher, S. Bernet, and M. Ritsch-Marte, Opt. Express 13, 689 (2005).
    [CrossRef] [PubMed]
  10. C.-S. Guo, Y.-J. Han, J.-B. Xu, and J. Ding, Opt. Lett. 31, 1394 (2006).
    [CrossRef] [PubMed]
  11. G. A. Swartzlander, Jr., Opt. Lett. 26, 497 (2001).
    [CrossRef]
  12. A. G. Peele, P. J. McMahon, D. Paterson, C. Q. Tran, A. P. Mancuso, K. A. Nugent, J. P. Hayes, E. Harvey, B. Lai, and I. McNulty, Opt. Lett. 27, 1752 (2002).
    [CrossRef]
  13. D. Cojoc, B. Kaulich, A. Carpentiero, S. Cabrini, L. Businaro, and E. Di Fabrizio, Microelectron. Eng. 83, 1360 (2006).
    [CrossRef]
  14. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1996).
  15. K. Rosfjord, Y. Liu, and D. Attwood, IEEE J. Sel. Top. Quantum Electron. 10, 1405 (2004).
    [CrossRef]

2006 (3)

2005 (1)

2004 (2)

K. Crabtree, J. A. Davis, and I. Moreno, Appl. Opt. 43, 1360 (2004).
[CrossRef] [PubMed]

K. Rosfjord, Y. Liu, and D. Attwood, IEEE J. Sel. Top. Quantum Electron. 10, 1405 (2004).
[CrossRef]

2003 (1)

2002 (3)

2001 (1)

2000 (1)

1995 (1)

G. Schmahl, D. Rudolph, P. Guttman, G. Schneider, J. Thieme, and B. Niemann, Rev. Sci. Instrum. 66, 1282 (1995).
[CrossRef]

1992 (1)

Appl. Opt. (1)

Appl. Phys. Lett. (1)

C. David, B. Nöhammer, H. H. Solak, and E. Ziegler, Appl. Phys. Lett. 81, 3287 (2002).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

K. Rosfjord, Y. Liu, and D. Attwood, IEEE J. Sel. Top. Quantum Electron. 10, 1405 (2004).
[CrossRef]

J. Opt. Soc. Am. A (1)

Microelectron. Eng. (1)

D. Cojoc, B. Kaulich, A. Carpentiero, S. Cabrini, L. Businaro, and E. Di Fabrizio, Microelectron. Eng. 83, 1360 (2006).
[CrossRef]

Opt. Express (2)

Opt. Lett. (6)

Rev. Sci. Instrum. (1)

G. Schmahl, D. Rudolph, P. Guttman, G. Schneider, J. Thieme, and B. Niemann, Rev. Sci. Instrum. 66, 1282 (1995).
[CrossRef]

Other (1)

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

a, Computer-generated radial Hilbert transform phase structures; b, computer-generated SZP phase structures; c, SEM images of the central portions of the binarized SZPs fabricated for the imaging experiment. The ZP parameters were as follows: outermost zone width of 72 nm , diameter of 86.7 μ m , 300 zones, 240 nm thick nickel.

Fig. 2
Fig. 2

Schematic of the beamline and microscope setup.

Fig. 3
Fig. 3

Images of a 1 μ m circular aperture taken at a wavelength of λ = 2.73 nm with each of the ZPs: (a) regular, (b) charge 1 spiral, (c) charge 2 spiral.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

H p ( r , ϕ ) = exp ( i p ϕ ) ,
ZP ( r , ϕ ) = exp ( i π r 2 λ f ) ,
SZP p ( r , ϕ ) = H p ( r , ϕ ) ZP ( r , ϕ ) = exp ( i p ϕ i π r 2 λ f ) .

Metrics