Abstract

Lasing from spherical microdroplets ejected into a liquid medium with a lower refractive index is observed in a microchannel. A microfabricated device that combines droplet production and excitation/detection has been utilized. Droplets of 50μm diameter containing a fluorescent dye were first detected and then excited through multimode fibers after their production at a T-junction. Images show intense lasing emission around the droplet rim. Spectra from the droplets exhibit morphology-dependent resonances that are redshifted relative to the bulk fluorescence emission from the dyes. The dependence of resonant peak intensities on the pump beam power is nonlinear.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. S. K. Padigi, K. Asante, V. S. R. Kovvuri, R. K. K. Reddy, A. La Rosa, and S. Prasad, Nanotechnology 17, 4384 (2006).
    [CrossRef]
  2. A. Yalcin, K. C. Popat, J. C. Aldridge, T. A. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, O. King, V. Van, S. Chu, D. Gill, M. Anthes-Washburn, and M. S. Unlu, IEEE J. Sel. Top. Quantum Electron. 12, 148 (2006).
    [CrossRef]
  3. A. Ksendzov and Y. Lin, Opt. Lett. 30, 3344 (2005).
    [CrossRef]
  4. N. M. Hanumegowda, I. M. White, H. Oveys, and X. D. Fan, Sens. Lett. 3, 315 (2005).
    [CrossRef]
  5. F. Vollmer, S. Arnold, D. Braun, I. Teraoka, and A. Libchaber, Biophys. J. 85, 1974 (2003).
    [CrossRef] [PubMed]
  6. F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, Appl. Phys. Lett. 80, 4057 (2002).
    [CrossRef]
  7. S. Blair and Y. Chen, Appl. Opt. 40, 570 (2001).
    [CrossRef]
  8. W. B. Whitten, M. J. Shapiro, J. M. Ramsey, and B. V. Bronk, Appl. Opt. 34, 3203 (1995).
    [CrossRef] [PubMed]
  9. G. Chen, M. M. Mazumder, R. K. Chang, J. C. Swindal, and W. P. Acker, Prog. Energy Combust. Sci. 22, 163 (1996).
    [CrossRef]
  10. H. B. Lin, J. D. Eversole, and A. J. Campillo, J. Opt. Soc. Am. B 9, 43 (1992).
    [CrossRef]
  11. R. Perron, M. Tanyeri, and I. M. Kennedy, "Monodisperse emulsion production at low breakup rates in a modified T-junction microfluidic device" (in preparation).
  12. P. Garstecki, M. J. Fuerstman, H. A. Stone, and G. M. Whitesides, Lab Chip 6, 437 (2006).
    [CrossRef] [PubMed]
  13. T. Nisisako, T. Torii, and T. Higuchi, Lab Chip 2, 24 (2002).
    [CrossRef]
  14. T. Thorsen, R. W. Roberts, F. H. Arnold, and S. R. Quake, Phys. Rev. Lett. 86, 4163 (2001).
    [CrossRef] [PubMed]
  15. A. Serpenguzel, S. Arnold, G. Griffel, and J. A. Lock, J. Opt. Soc. Am. B 14, 790 (1997).
    [CrossRef]

2006

S. K. Padigi, K. Asante, V. S. R. Kovvuri, R. K. K. Reddy, A. La Rosa, and S. Prasad, Nanotechnology 17, 4384 (2006).
[CrossRef]

A. Yalcin, K. C. Popat, J. C. Aldridge, T. A. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, O. King, V. Van, S. Chu, D. Gill, M. Anthes-Washburn, and M. S. Unlu, IEEE J. Sel. Top. Quantum Electron. 12, 148 (2006).
[CrossRef]

P. Garstecki, M. J. Fuerstman, H. A. Stone, and G. M. Whitesides, Lab Chip 6, 437 (2006).
[CrossRef] [PubMed]

2005

A. Ksendzov and Y. Lin, Opt. Lett. 30, 3344 (2005).
[CrossRef]

N. M. Hanumegowda, I. M. White, H. Oveys, and X. D. Fan, Sens. Lett. 3, 315 (2005).
[CrossRef]

2003

F. Vollmer, S. Arnold, D. Braun, I. Teraoka, and A. Libchaber, Biophys. J. 85, 1974 (2003).
[CrossRef] [PubMed]

2002

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, Appl. Phys. Lett. 80, 4057 (2002).
[CrossRef]

T. Nisisako, T. Torii, and T. Higuchi, Lab Chip 2, 24 (2002).
[CrossRef]

2001

T. Thorsen, R. W. Roberts, F. H. Arnold, and S. R. Quake, Phys. Rev. Lett. 86, 4163 (2001).
[CrossRef] [PubMed]

S. Blair and Y. Chen, Appl. Opt. 40, 570 (2001).
[CrossRef]

1997

1996

G. Chen, M. M. Mazumder, R. K. Chang, J. C. Swindal, and W. P. Acker, Prog. Energy Combust. Sci. 22, 163 (1996).
[CrossRef]

1995

1992

Appl. Opt.

Appl. Phys. Lett.

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, Appl. Phys. Lett. 80, 4057 (2002).
[CrossRef]

Biophys. J.

F. Vollmer, S. Arnold, D. Braun, I. Teraoka, and A. Libchaber, Biophys. J. 85, 1974 (2003).
[CrossRef] [PubMed]

IEEE J. Sel. Top. Quantum Electron.

A. Yalcin, K. C. Popat, J. C. Aldridge, T. A. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, O. King, V. Van, S. Chu, D. Gill, M. Anthes-Washburn, and M. S. Unlu, IEEE J. Sel. Top. Quantum Electron. 12, 148 (2006).
[CrossRef]

J. Opt. Soc. Am. B

Lab Chip

P. Garstecki, M. J. Fuerstman, H. A. Stone, and G. M. Whitesides, Lab Chip 6, 437 (2006).
[CrossRef] [PubMed]

T. Nisisako, T. Torii, and T. Higuchi, Lab Chip 2, 24 (2002).
[CrossRef]

Nanotechnology

S. K. Padigi, K. Asante, V. S. R. Kovvuri, R. K. K. Reddy, A. La Rosa, and S. Prasad, Nanotechnology 17, 4384 (2006).
[CrossRef]

Opt. Lett.

Phys. Rev. Lett.

T. Thorsen, R. W. Roberts, F. H. Arnold, and S. R. Quake, Phys. Rev. Lett. 86, 4163 (2001).
[CrossRef] [PubMed]

Prog. Energy Combust. Sci.

G. Chen, M. M. Mazumder, R. K. Chang, J. C. Swindal, and W. P. Acker, Prog. Energy Combust. Sci. 22, 163 (1996).
[CrossRef]

Sens. Lett.

N. M. Hanumegowda, I. M. White, H. Oveys, and X. D. Fan, Sens. Lett. 3, 315 (2005).
[CrossRef]

Other

R. Perron, M. Tanyeri, and I. M. Kennedy, "Monodisperse emulsion production at low breakup rates in a modified T-junction microfluidic device" (in preparation).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Layout of the microfabricated droplet generator with a T-junction configuration. (a) Dimensions of the T-junction device. (b) Micrograph of droplet formation in the microchannel.

Fig. 2
Fig. 2

Experimental setup for optical resonance experiments in microdroplets produced in a microfabricated chip.

Fig. 3
Fig. 3

Droplet lasing in a microchannel. Upper section (a)–(j) shows the droplet ejection through the T-junction device. The droplet is excited (f)–(h) through an integrated multimode fiber. The two figures (below) show lasing images from microdroplets excited with a pulsed laser. The left image (k) shows some green laser scattering the pump laser is filtered with a 532 nm notch filter on the right image (l). The bulk fluorescence emission (orange) is observed from the interior region of the droplets. The strong red lasing emission is observed near the rim.

Fig. 4
Fig. 4

Lasing spectra from 50 60 μ m diameter water-glycerol droplets containing 10 μ M Rhodamine 6G or Fluorescein. The lasing (MDR) spectrum is red shifted compared to the bulk fluorescence emission (where the absorption from the dye molecules is weak). The MDR spectrum confirms the observation of lasing emission through droplet images. The inset shows the nonlinear dependence of lasing emission intensity upon pump laser intensity.

Metrics