Abstract

We present here a three-dimensional evaluation of the amplitude point-spread function (APSF) of a microscope objective (MO), based on a single holographic acquisition of its pupil wavefront. The aberration function is extracted from this pupil measurements and then inserted in a scalar model of diffraction, allowing one to calculate the distribution of the complex wavefront propagated around the focal point. The accuracy of the results is compared with a direct measurement of the APSF with a second holographic system located in the image plane of the MO. Measurements on a 100× 1.3 NA MO are presented.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, Opt. Lett. 30, 468 (2005).
    [CrossRef] [PubMed]
  2. J. L. Selligson, "Phase measurement in the focal region of an abberated lens,"Ph.D. dissertation (University of Rochester, 1981).
  3. R. Juskaitis and T. Wilson, J. Microsc. 189, 8 (1998).
    [CrossRef]
  4. J. L. Beverage, R. V. Shack, and M. R. Descour, J. Microsc. 205, 61 (2002).
    [CrossRef] [PubMed]
  5. P. Török and K. Fu-Jen, Opt. Commun. 213, 97 (2002).
    [CrossRef]
  6. B. M. Hanser, M. G. L. Gustafsson, D. A. Agard, and J. W. Sedat, J. Microsc. 216, 32 (2004).
    [CrossRef] [PubMed]
  7. J. Heil, J. Wesner, W. Müller, and T. Sure, Appl. Opt. 42, 5073 (2003).
    [CrossRef] [PubMed]
  8. E. Cuche, P. Marquet, and C. Depeursinge, Appl. Opt. 39, 4070 (2000).
    [CrossRef]
  9. T. Colomb, E. Cuche, F. Charrière, J. Kühn, N. Aspert, F. Montfort, P. Marquet, and C. Depeursinge, Appl. Opt. 45, 851 (2006).
    [CrossRef] [PubMed]
  10. A. Marian, F. Charrière, T. Colomb, F. Montfort, J. Kühn, P. Marquet, and C. Depeursinge, J. Microsc. 225, 156 (2007).
    [CrossRef] [PubMed]
  11. W. Wang, A. T. Friberg, and E. Wolf, J. Opt. Soc. Am. A 12, 1947 (1995).
    [CrossRef]
  12. M. Gu, Advanced Optical Imaging Theory (Springer-Verlag, 2000).
  13. S. F. Gibson and F. Lanni, J. Opt. Soc. Am. A 8, 1601 (1991).
    [CrossRef]

2007 (1)

A. Marian, F. Charrière, T. Colomb, F. Montfort, J. Kühn, P. Marquet, and C. Depeursinge, J. Microsc. 225, 156 (2007).
[CrossRef] [PubMed]

2006 (1)

2005 (1)

2004 (1)

B. M. Hanser, M. G. L. Gustafsson, D. A. Agard, and J. W. Sedat, J. Microsc. 216, 32 (2004).
[CrossRef] [PubMed]

2003 (1)

2002 (2)

J. L. Beverage, R. V. Shack, and M. R. Descour, J. Microsc. 205, 61 (2002).
[CrossRef] [PubMed]

P. Török and K. Fu-Jen, Opt. Commun. 213, 97 (2002).
[CrossRef]

2000 (1)

1998 (1)

R. Juskaitis and T. Wilson, J. Microsc. 189, 8 (1998).
[CrossRef]

1995 (1)

1991 (1)

Agard, D. A.

B. M. Hanser, M. G. L. Gustafsson, D. A. Agard, and J. W. Sedat, J. Microsc. 216, 32 (2004).
[CrossRef] [PubMed]

Aspert, N.

Beverage, J. L.

J. L. Beverage, R. V. Shack, and M. R. Descour, J. Microsc. 205, 61 (2002).
[CrossRef] [PubMed]

Charrière, F.

A. Marian, F. Charrière, T. Colomb, F. Montfort, J. Kühn, P. Marquet, and C. Depeursinge, J. Microsc. 225, 156 (2007).
[CrossRef] [PubMed]

T. Colomb, E. Cuche, F. Charrière, J. Kühn, N. Aspert, F. Montfort, P. Marquet, and C. Depeursinge, Appl. Opt. 45, 851 (2006).
[CrossRef] [PubMed]

Colomb, T.

Cuche, E.

Depeursinge, C.

Descour, M. R.

J. L. Beverage, R. V. Shack, and M. R. Descour, J. Microsc. 205, 61 (2002).
[CrossRef] [PubMed]

Emery, Y.

Friberg, A. T.

Fu-Jen, K.

P. Török and K. Fu-Jen, Opt. Commun. 213, 97 (2002).
[CrossRef]

Gibson, S. F.

Gu, M.

M. Gu, Advanced Optical Imaging Theory (Springer-Verlag, 2000).

Gustafsson, M. G. L.

B. M. Hanser, M. G. L. Gustafsson, D. A. Agard, and J. W. Sedat, J. Microsc. 216, 32 (2004).
[CrossRef] [PubMed]

Hanser, B. M.

B. M. Hanser, M. G. L. Gustafsson, D. A. Agard, and J. W. Sedat, J. Microsc. 216, 32 (2004).
[CrossRef] [PubMed]

Heil, J.

Juskaitis, R.

R. Juskaitis and T. Wilson, J. Microsc. 189, 8 (1998).
[CrossRef]

Kühn, J.

A. Marian, F. Charrière, T. Colomb, F. Montfort, J. Kühn, P. Marquet, and C. Depeursinge, J. Microsc. 225, 156 (2007).
[CrossRef] [PubMed]

T. Colomb, E. Cuche, F. Charrière, J. Kühn, N. Aspert, F. Montfort, P. Marquet, and C. Depeursinge, Appl. Opt. 45, 851 (2006).
[CrossRef] [PubMed]

Lanni, F.

Magistretti, P. J.

Marian, A.

A. Marian, F. Charrière, T. Colomb, F. Montfort, J. Kühn, P. Marquet, and C. Depeursinge, J. Microsc. 225, 156 (2007).
[CrossRef] [PubMed]

Marquet, P.

Montfort, F.

A. Marian, F. Charrière, T. Colomb, F. Montfort, J. Kühn, P. Marquet, and C. Depeursinge, J. Microsc. 225, 156 (2007).
[CrossRef] [PubMed]

T. Colomb, E. Cuche, F. Charrière, J. Kühn, N. Aspert, F. Montfort, P. Marquet, and C. Depeursinge, Appl. Opt. 45, 851 (2006).
[CrossRef] [PubMed]

Müller, W.

Rappaz, B.

Sedat, J. W.

B. M. Hanser, M. G. L. Gustafsson, D. A. Agard, and J. W. Sedat, J. Microsc. 216, 32 (2004).
[CrossRef] [PubMed]

Selligson, J. L.

J. L. Selligson, "Phase measurement in the focal region of an abberated lens,"Ph.D. dissertation (University of Rochester, 1981).

Shack, R. V.

J. L. Beverage, R. V. Shack, and M. R. Descour, J. Microsc. 205, 61 (2002).
[CrossRef] [PubMed]

Sure, T.

Török, P.

P. Török and K. Fu-Jen, Opt. Commun. 213, 97 (2002).
[CrossRef]

Wang, W.

Wesner, J.

Wilson, T.

R. Juskaitis and T. Wilson, J. Microsc. 189, 8 (1998).
[CrossRef]

Wolf, E.

Appl. Opt. (3)

J. Microsc. (4)

A. Marian, F. Charrière, T. Colomb, F. Montfort, J. Kühn, P. Marquet, and C. Depeursinge, J. Microsc. 225, 156 (2007).
[CrossRef] [PubMed]

R. Juskaitis and T. Wilson, J. Microsc. 189, 8 (1998).
[CrossRef]

J. L. Beverage, R. V. Shack, and M. R. Descour, J. Microsc. 205, 61 (2002).
[CrossRef] [PubMed]

B. M. Hanser, M. G. L. Gustafsson, D. A. Agard, and J. W. Sedat, J. Microsc. 216, 32 (2004).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (2)

Opt. Commun. (1)

P. Török and K. Fu-Jen, Opt. Commun. 213, 97 (2002).
[CrossRef]

Opt. Lett. (1)

Other (2)

J. L. Selligson, "Phase measurement in the focal region of an abberated lens,"Ph.D. dissertation (University of Rochester, 1981).

M. Gu, Advanced Optical Imaging Theory (Springer-Verlag, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Setup for APSF measurement: BS, beam splitter; BE, beam expander, NF, neutral density filter; λ 2 half-wave plate; M, mirror; FC, fiber-coupling lens; PS, piezo system, MS, micrometric stage; MO, microscope objective; O, object wave; R, reference wave. Inset, detail of the off-axis geometry at the incidence on the CCD.

Fig. 2
Fig. 2

Reconstructed images of the pupil hologram: (a) intensity, (b) direct measured phase, (c) aberration function, (d) residual phase after aberration function subtraction. Phase images gray-scale range is between π and π.

Fig. 3
Fig. 3

Focusing through a lens of aperture a, focal f, and maximum subtended half-angle α.

Fig. 4
Fig. 4

(a) x–z and (b) x–y image comparisons in amplitude and phase between APSF measurement (top) calculated APSF with the Gibson and Lanni model (middle) and calculated with the scalar model of diffraction with aberration description extracted in the pupil (bottom). Measurements performed in oil ( n = 1.518 ) without coverslip for a × 100 1.3 NA microscope objective. (Intensity images are enhanced by a nonlinear distribution of the gray levels; phase images gray-scale range is between π and π.)

Tables (1)

Tables Icon

Table 1 Zernike Polynomials and Measured Coefficients in the Pupil of the MO

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

U ( r 2 , ψ , z 2 ) = i λ 0 2 π 0 α P ( θ , φ ) exp [ i k r 2 sin θ cos ( φ ψ ) i k z 2 cos θ ] sin θ d θ d φ ,

Metrics