Abstract

We report a novel scheme to optimize the focusing condition for real-time, swept-source optical coherence microscopy. The axial and lateral behaviors of four-zone binary-phase spatial filters are presented numerically. A nearly constant axial intensity distribution along an extended depth of focus of 1.5mm and a lateral resolution of 5μm are experimentally verified. The A-line scan rate is up to 16kHz, yielding a frame rate of 25Hz and 640 lines per image.

© 2007 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Endoscopic micro-optical coherence tomography with extended depth of focus using a binary phase spatial filter

Junyoung Kim, Jingchao Xing, Hyeong Soo Nam, Joon Woo Song, Jin Won Kim, and Hongki Yoo
Opt. Lett. 42(3) 379-382 (2017)

Numerically focused full-field swept-source optical coherence microscopy with low spatial coherence illumination

Anton Grebenyuk, Antoine Federici, Vladimir Ryabukho, and Arnaud Dubois
Appl. Opt. 53(8) 1697-1708 (2014)

Swept source optical coherence tomography as a tool for real time visualization and localization of electrodes used in electrophysiological studies of brain in vivo

Hideyuki Watanabe, Uma Maheswari Rajagopalan, Yu Nakamichi, Kei M. Igarashi, Hirofumi Kadono, and Manabu Tanifuji
Biomed. Opt. Express 2(11) 3129-3134 (2011)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (5)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription