Abstract

We have measured the phase structure of a glass wedge with single photons and biphotons in a Mach–Zehnder interferometer using parametric downconverted light from a Hong–Ou–Mandel particle interferometer as the source. By scanning the wedge through the focus of a microscope objective we find a doubling of the period of the interference pattern in the coincidence counts for biphotons compared to the single-photon experiment. We compare our measurement setup with classical ones and discuss some of the problems of superresolution in quantum lithography.

© 2007 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Two-photon interference from a bright single-photon source at telecom wavelengths

Je-Hyung Kim, Tao Cai, Christopher J. K. Richardson, Richard P. Leavitt, and Edo Waks
Optica 3(6) 577-584 (2016)

Low-noise quantum frequency down-conversion of indistinguishable photons

Benjamin Kambs, Jan Kettler, Matthias Bock, Jonas Nils Becker, Carsten Arend, Andreas Lenhard, Simone Luca Portalupi, Michael Jetter, Peter Michler, and Christoph Becher
Opt. Express 24(19) 22250-22260 (2016)

Arbitrary interference curves by coincidence detection: theory and experiment

Saroosh Shabbir, Marcin Swillo, and Gunnar Björk
J. Opt. Soc. Am. A 30(10) 1921-1928 (2013)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (4)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription