Abstract

The efficiency of an optical trap is limited by its axial strength. Light focused by oil-immersion objectives provides stronger traps but suffers from spherical aberrations, thus restricting the axial stability and working distance. By changing the refractive index of the immersion media we compensate spherical aberrations and measure axial trapping strengths at least twice as large as previously reported. Moreover, the spherical aberrations can be compensated at any desired depth. The improved trapping efficiency implies significantly less heating of the particles, thus diminishing previously published concerns about using gold nanoparticles as handles for optical manipulation.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, J. M. Dziedzic, and T. Yamane, Nature 330, 769 (1987).
    [CrossRef] [PubMed]
  2. P. M. Hansen, V. K. Bhatia, and L. Oddershede, Nano Lett. 5, 1937 (2005).
    [CrossRef] [PubMed]
  3. Y. Seol, A. E. Carpenter, and T. T. Perkins, Opt. Lett. 31, 2429 (2006).
    [CrossRef] [PubMed]
  4. L. Sherman, J. Y. Ye, O. Albert, and T. B. Norris, J. Microsc. 206, 65 (2002).
    [CrossRef] [PubMed]
  5. T. Ota, T. Sugiura, S. Kawata, M. J. Booth, M. A. A. Neil, R. Juskaitis, and T. Wilson, Jpn. J. Appl. Phys., Part 1 42, L701 (2003).
    [CrossRef]
  6. S. N. S. Reihani, H. R. Khalesifard, and R. Golestanian, Opt. Commun. 259, 204 (2006).
    [CrossRef]
  7. S. N. S. Reihani, M. A. Charsooghi, H. R. Khalesifard, and R. Golestanian, Opt. Lett. 31, 766 (2006).
    [CrossRef] [PubMed]
  8. P. C. Ke and M. Gu, J. Mod. Opt. 45, 2159 (1998).
    [CrossRef]
  9. L. Oddershede, S. Grego, S. Nørrelykke, and K. Berg-Sørensen, Probe Microsc. 2, 129 (2001).
  10. K. Berg-Sørensen and H. Flyvbjerg, Rev. Sci. Instrum. 75, 594 (2004).
    [CrossRef]
  11. J. K. Dreyer, K. Berg-Sørensen, and L. Oddershede, Appl. Opt. 43, 1991 (2004).
    [CrossRef] [PubMed]
  12. A. Rohrbach, Phys. Rev. Lett. 95, 168102 (2005).
    [CrossRef] [PubMed]

2006 (3)

2005 (2)

P. M. Hansen, V. K. Bhatia, and L. Oddershede, Nano Lett. 5, 1937 (2005).
[CrossRef] [PubMed]

A. Rohrbach, Phys. Rev. Lett. 95, 168102 (2005).
[CrossRef] [PubMed]

2004 (2)

2003 (1)

T. Ota, T. Sugiura, S. Kawata, M. J. Booth, M. A. A. Neil, R. Juskaitis, and T. Wilson, Jpn. J. Appl. Phys., Part 1 42, L701 (2003).
[CrossRef]

2002 (1)

L. Sherman, J. Y. Ye, O. Albert, and T. B. Norris, J. Microsc. 206, 65 (2002).
[CrossRef] [PubMed]

2001 (1)

L. Oddershede, S. Grego, S. Nørrelykke, and K. Berg-Sørensen, Probe Microsc. 2, 129 (2001).

1998 (1)

P. C. Ke and M. Gu, J. Mod. Opt. 45, 2159 (1998).
[CrossRef]

1987 (1)

A. Ashkin, J. M. Dziedzic, and T. Yamane, Nature 330, 769 (1987).
[CrossRef] [PubMed]

Albert, O.

L. Sherman, J. Y. Ye, O. Albert, and T. B. Norris, J. Microsc. 206, 65 (2002).
[CrossRef] [PubMed]

Ashkin, A.

A. Ashkin, J. M. Dziedzic, and T. Yamane, Nature 330, 769 (1987).
[CrossRef] [PubMed]

Berg-Sørensen, K.

K. Berg-Sørensen and H. Flyvbjerg, Rev. Sci. Instrum. 75, 594 (2004).
[CrossRef]

J. K. Dreyer, K. Berg-Sørensen, and L. Oddershede, Appl. Opt. 43, 1991 (2004).
[CrossRef] [PubMed]

L. Oddershede, S. Grego, S. Nørrelykke, and K. Berg-Sørensen, Probe Microsc. 2, 129 (2001).

Bhatia, V. K.

P. M. Hansen, V. K. Bhatia, and L. Oddershede, Nano Lett. 5, 1937 (2005).
[CrossRef] [PubMed]

Booth, M. J.

T. Ota, T. Sugiura, S. Kawata, M. J. Booth, M. A. A. Neil, R. Juskaitis, and T. Wilson, Jpn. J. Appl. Phys., Part 1 42, L701 (2003).
[CrossRef]

Carpenter, A. E.

Charsooghi, M. A.

Dreyer, J. K.

Dziedzic, J. M.

A. Ashkin, J. M. Dziedzic, and T. Yamane, Nature 330, 769 (1987).
[CrossRef] [PubMed]

Flyvbjerg, H.

K. Berg-Sørensen and H. Flyvbjerg, Rev. Sci. Instrum. 75, 594 (2004).
[CrossRef]

Golestanian, R.

Grego, S.

L. Oddershede, S. Grego, S. Nørrelykke, and K. Berg-Sørensen, Probe Microsc. 2, 129 (2001).

Gu, M.

P. C. Ke and M. Gu, J. Mod. Opt. 45, 2159 (1998).
[CrossRef]

Hansen, P. M.

P. M. Hansen, V. K. Bhatia, and L. Oddershede, Nano Lett. 5, 1937 (2005).
[CrossRef] [PubMed]

Juskaitis, R.

T. Ota, T. Sugiura, S. Kawata, M. J. Booth, M. A. A. Neil, R. Juskaitis, and T. Wilson, Jpn. J. Appl. Phys., Part 1 42, L701 (2003).
[CrossRef]

Kawata, S.

T. Ota, T. Sugiura, S. Kawata, M. J. Booth, M. A. A. Neil, R. Juskaitis, and T. Wilson, Jpn. J. Appl. Phys., Part 1 42, L701 (2003).
[CrossRef]

Ke, P. C.

P. C. Ke and M. Gu, J. Mod. Opt. 45, 2159 (1998).
[CrossRef]

Khalesifard, H. R.

Neil, M. A. A.

T. Ota, T. Sugiura, S. Kawata, M. J. Booth, M. A. A. Neil, R. Juskaitis, and T. Wilson, Jpn. J. Appl. Phys., Part 1 42, L701 (2003).
[CrossRef]

Nørrelykke, S.

L. Oddershede, S. Grego, S. Nørrelykke, and K. Berg-Sørensen, Probe Microsc. 2, 129 (2001).

Norris, T. B.

L. Sherman, J. Y. Ye, O. Albert, and T. B. Norris, J. Microsc. 206, 65 (2002).
[CrossRef] [PubMed]

Oddershede, L.

P. M. Hansen, V. K. Bhatia, and L. Oddershede, Nano Lett. 5, 1937 (2005).
[CrossRef] [PubMed]

J. K. Dreyer, K. Berg-Sørensen, and L. Oddershede, Appl. Opt. 43, 1991 (2004).
[CrossRef] [PubMed]

L. Oddershede, S. Grego, S. Nørrelykke, and K. Berg-Sørensen, Probe Microsc. 2, 129 (2001).

Ota, T.

T. Ota, T. Sugiura, S. Kawata, M. J. Booth, M. A. A. Neil, R. Juskaitis, and T. Wilson, Jpn. J. Appl. Phys., Part 1 42, L701 (2003).
[CrossRef]

Perkins, T. T.

Reihani, S. N. S.

Rohrbach, A.

A. Rohrbach, Phys. Rev. Lett. 95, 168102 (2005).
[CrossRef] [PubMed]

Seol, Y.

Sherman, L.

L. Sherman, J. Y. Ye, O. Albert, and T. B. Norris, J. Microsc. 206, 65 (2002).
[CrossRef] [PubMed]

Sugiura, T.

T. Ota, T. Sugiura, S. Kawata, M. J. Booth, M. A. A. Neil, R. Juskaitis, and T. Wilson, Jpn. J. Appl. Phys., Part 1 42, L701 (2003).
[CrossRef]

Wilson, T.

T. Ota, T. Sugiura, S. Kawata, M. J. Booth, M. A. A. Neil, R. Juskaitis, and T. Wilson, Jpn. J. Appl. Phys., Part 1 42, L701 (2003).
[CrossRef]

Yamane, T.

A. Ashkin, J. M. Dziedzic, and T. Yamane, Nature 330, 769 (1987).
[CrossRef] [PubMed]

Ye, J. Y.

L. Sherman, J. Y. Ye, O. Albert, and T. B. Norris, J. Microsc. 206, 65 (2002).
[CrossRef] [PubMed]

Appl. Opt. (1)

J. Microsc. (1)

L. Sherman, J. Y. Ye, O. Albert, and T. B. Norris, J. Microsc. 206, 65 (2002).
[CrossRef] [PubMed]

J. Mod. Opt. (1)

P. C. Ke and M. Gu, J. Mod. Opt. 45, 2159 (1998).
[CrossRef]

Jpn. J. Appl. Phys., Part 1 (1)

T. Ota, T. Sugiura, S. Kawata, M. J. Booth, M. A. A. Neil, R. Juskaitis, and T. Wilson, Jpn. J. Appl. Phys., Part 1 42, L701 (2003).
[CrossRef]

Nano Lett. (1)

P. M. Hansen, V. K. Bhatia, and L. Oddershede, Nano Lett. 5, 1937 (2005).
[CrossRef] [PubMed]

Nature (1)

A. Ashkin, J. M. Dziedzic, and T. Yamane, Nature 330, 769 (1987).
[CrossRef] [PubMed]

Opt. Commun. (1)

S. N. S. Reihani, H. R. Khalesifard, and R. Golestanian, Opt. Commun. 259, 204 (2006).
[CrossRef]

Opt. Lett. (2)

Phys. Rev. Lett. (1)

A. Rohrbach, Phys. Rev. Lett. 95, 168102 (2005).
[CrossRef] [PubMed]

Probe Microsc. (1)

L. Oddershede, S. Grego, S. Nørrelykke, and K. Berg-Sørensen, Probe Microsc. 2, 129 (2001).

Rev. Sci. Instrum. (1)

K. Berg-Sørensen and H. Flyvbjerg, Rev. Sci. Instrum. 75, 594 (2004).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic drawing of marginal rays.

Fig. 2
Fig. 2

Axial spring constant as a function of trapping depth for PS beads with a diameter of 1.01 μ m using immersion oils with different refractive indices. Laser power at the sample, 37 mW .

Fig. 3
Fig. 3

Trapping strength as a function of laser power measured at the sample for PS beads with diameters of a, 0.33; b, 0.49; c, 0.8; and d, 1.01 μ m . Each data point is an average from 5 measurements.

Fig. 4
Fig. 4

Spring constant in the y direction as a function of laser power while trapping 100 nm gold nanoparticles. Insets show position distributions on linear (right) and semilog (left) scales, respectively. Laser power at the sample, 26 mW .

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

S A t o t a l = S A t u b e + S A o b j + S A i m c o v + S A c o v s a m p l e ,
ψ ( θ 1 , θ 2 , d w ) = k 0 d w ( n 1 cos θ 1 n 2 cos θ 2 ) ,

Metrics